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Chapter 13

Inferential Statistics

Recall that Matias Mehl and his colleagues, in their study of sex differences in
talkativeness, found that the women in their sample spoke a mean of 16,215 words
per day and the men a mean of 15,669 words per day (Mehl, Vazire, Ramirez-
Esparza, Slatcher, & Pennebaker, 2007).Mehl, M. R., Vazire, S., Ramirez-Esparza, N.,
Slatcher, R. B., & Pennebaker, J. W. (2007). Are women really more talkative than
men? Science, 317, 82. But despite this sex difference in their sample, they concluded
that there was no evidence of a sex difference in talkativeness in the population.
Recall also that Allen Kanner and his colleagues, in their study of the relationship
between daily hassles and symptoms, found a correlation of +.60 in their sample
(Kanner, Coyne, Schaefer, & Lazarus, 1981).Kanner, A. D., Coyne, J. C., Schaefer, C., &
Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles
and uplifts versus major life events. Journal of Behavioral Medicine, 4, 1–39. But they
concluded that this means there is a relationship between hassles and symptoms in
the population. This raises the question of how researchers can say whether their
sample result reflects something that is true of the population.

The answer to this question is that they use a set of techniques called inferential
statistics, which is what this chapter is about. We focus, in particular, on null
hypothesis testing, the most common approach to inferential statistics in
psychological research. We begin with a conceptual overview of null hypothesis
testing, including its purpose and basic logic. Then we look at several null
hypothesis testing techniques for drawing conclusions about differences between
means and about correlations between quantitative variables. Finally, we consider a
few other important ideas related to null hypothesis testing, including some that
can be helpful in planning new studies and interpreting results. We also look at
some long-standing criticisms of null hypothesis testing and some ways of dealing
with these criticisms.
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13.1 Understanding Null Hypothesis Testing

LEARNING OBJECTIVES

1. Explain the purpose of null hypothesis testing, including the role of
sampling error.

2. Describe the basic logic of null hypothesis testing.
3. Describe the role of relationship strength and sample size in

determining statistical significance and make reasonable judgments
about statistical significance based on these two factors.

The Purpose of Null Hypothesis Testing

As we have seen, psychological research typically involves measuring one or more
variables for a sample and computing descriptive statistics for that sample. In
general, however, the researcher’s goal is not to draw conclusions about that
sample but to draw conclusions about the population that the sample was selected
from. Thus researchers must use sample statistics to draw conclusions about the
corresponding values in the population. These corresponding values in the
population are called parameters1. Imagine, for example, that a researcher
measures the number of depressive symptoms exhibited by each of 50 clinically
depressed adults and computes the mean number of symptoms. The researcher
probably wants to use this sample statistic (the mean number of symptoms for the
sample) to draw conclusions about the corresponding population parameter (the
mean number of symptoms for clinically depressed adults).

Unfortunately, sample statistics are not perfect estimates of their corresponding
population parameters. This is because there is a certain amount of random
variability in any statistic from sample to sample. The mean number of depressive
symptoms might be 8.73 in one sample of clinically depressed adults, 6.45 in a
second sample, and 9.44 in a third—even though these samples are selected
randomly from the same population. Similarly, the correlation (Pearson’s r)
between two variables might be +.24 in one sample, −.04 in a second sample, and
+.15 in a third—again, even though these samples are selected randomly from the
same population. This random variability in a statistic from sample to sample is
called sampling error2. (Note that the term error here refers to random variability
and does not imply that anyone has made a mistake. No one “commits a sampling
error.”)

1. A numerical summary (e.g.,
mean, standard deviation) of a
population. A numerical
summary of a sample is called a
“statistic.”

2. Random variation in a statistic
from sample to sample.
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One implication of this is that when there is a statistical relationship in a sample, it
is not always clear that there is a statistical relationship in the population. A small
difference between two group means in a sample might indicate that there is a
small difference between the two group means in the population. But it could also
be that there is no difference between the means in the population and that the
difference in the sample is just a matter of sampling error. Similarly, a Pearson’s r
value of −.29 in a sample might mean that there is a negative relationship in the
population. But it could also be that there is no relationship in the population and
that the relationship in the sample is just a matter of sampling error.

In fact, any statistical relationship in a sample can be interpreted in two ways:

1. There is a relationship in the population, and the relationship in the
sample reflects this.

2. There is no relationship in the population, and the relationship in the
sample reflects only sampling error.

The purpose of null hypothesis testing is simply to help researchers decide between
these two interpretations.

The Logic of Null Hypothesis Testing

Null hypothesis testing3 is a formal approach to deciding between two
interpretations of a statistical relationship in a sample. One interpretation is called
the null hypothesis4 (often symbolized H0 and read as “H-naught”). This is the idea

that there is no relationship in the population and that the relationship in the
sample reflects only sampling error. Informally, the null hypothesis is that the
sample relationship “occurred by chance.” The other interpretation is called the
alternative hypothesis5 (often symbolized as H1). This is the idea that there is a

relationship in the population and that the relationship in the sample reflects this
relationship in the population.

Again, every statistical relationship in a sample can be interpreted in either of these
two ways: It might have occurred by chance, or it might reflect a relationship in the
population. So researchers need a way to decide between them. Although there are
many specific null hypothesis testing techniques, they are all based on the same
general logic. The steps are as follows:

1. Assume for the moment that the null hypothesis is true. There is no
relationship between the variables in the population.

3. A formal approach to deciding
whether a sample relationship
is due to chance (the null
hypothesis) or reflects a real
relationship in the population
(the alternative hypothesis).

4. The idea that there is no
statistical relationship between
two variables in the population
and that any relationship in a
sample is due to chance. Often
abbreviated H0.

5. The idea that there is a
statistical relationship between
two variables in the population
and that any relationship in a
sample reflects that real
relationship. Often abbreviated
H1.
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2. Determine how likely the sample relationship would be if the null
hypothesis were true.

3. If the sample relationship would be extremely unlikely, then reject the
null hypothesis6 in favor of the alternative hypothesis. If it would not
be extremely unlikely, then retain the null hypothesis7.

Following this logic, we can begin to understand why Mehl and his colleagues
concluded that there is no difference in talkativeness between women and men in
the population. In essence, they asked the following question: “If there were no
difference in the population, how likely is it that we would find a small difference of
d = 0.06 in our sample?” Their answer to this question was that this sample
relationship would be fairly likely if the null hypothesis were true. Therefore, they
retained the null hypothesis—concluding that there is no evidence of a sex
difference in the population. We can also see why Kanner and his colleagues
concluded that there is a correlation between hassles and symptoms in the
population. They asked, “If the null hypothesis were true, how likely is it that we
would find a strong correlation of +.60 in our sample?” Their answer to this
question was that this sample relationship would be fairly unlikely if the null
hypothesis were true. Therefore, they rejected the null hypothesis in favor of the
alternative hypothesis—concluding that there is a positive correlation between
these variables in the population.

A crucial step in null hypothesis testing is finding the likelihood of the sample
result if the null hypothesis were true. This probability is called the p value8. A low
p value means that the sample result would be unlikely if the null hypothesis were
true and leads to the rejection of the null hypothesis. A high p value means that the
sample result would be likely if the null hypothesis were true and leads to the
retention of the null hypothesis. But how low must the p value be before the sample
result is considered unlikely enough to reject the null hypothesis? In null
hypothesis testing, this criterion is called α (alpha)9 and is almost always set to .05.
If there is less than a 5% chance of a result as extreme as the sample result if the
null hypothesis were true, then the null hypothesis is rejected. When this happens,
the result is said to be statistically significant10. If there is greater than a 5%
chance of a result as extreme as the sample result when the null hypothesis is true,
then the null hypothesis is retained. This does not necessarily mean that the
researcher accepts the null hypothesis as true—only that there is not currently
enough evidence to conclude that it is true. Researchers often use the expression
“fail to reject the null hypothesis” rather than “retain the null hypothesis,” but
they never use the expression “accept the null hypothesis.”

6. In null hypothesis testing, the
conclusion that the null
hypothesis is false. The sample
relationship reflects a real
relationship in the population.

7. In null hypothesis testing, the
tentative conclusion that the
null hypothesis is true. The
sample relationship is due to
chance. Often expressed as
“fail to reject the null
hypothesis” (although never as
“accept the null hypothesis”).

8. In null hypothesis testing, the
probability of a sample result
at least as extreme as the one
obtained if the null hypothesis
were true.

9. In null hypothesis testing, the
criterion for deciding that a p
value is low enough to reject
the null hypothesis. In
psychological research, it is
almost always set to .05.

10. Used to describe a result for
which the null hypothesis has
been rejected.
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The Misunderstood p Value

The p value is one of the most misunderstood quantities in psychological
research (Cohen, 1994).Cohen, J. (1994). The world is round: p < .05. American
Psychologist, 49, 997–1003. Even professional researchers misinterpret it, and it is
not unusual for such misinterpretations to appear in statistics textbooks!

The most common misinterpretation is that the p value is the probability that
the null hypothesis is true—that the sample result occurred by chance. For
example, a misguided researcher might say that because the p value is .02,
there is only a 2% chance that the result is due to chance and a 98% chance that
it reflects a real relationship in the population. But this is incorrect. The p value
is really the probability of a result at least as extreme as the sample result if the
null hypothesis were true. So a p value of .02 means that if the null hypothesis
were true, a sample result this extreme would occur only 2% of the time.

You can avoid this misunderstanding by remembering that the p value is not
the probability that any particular hypothesis is true or false. Instead, it is the
probability of obtaining the sample result if the null hypothesis were true.

Role of Sample Size and Relationship Strength

Recall that null hypothesis testing involves answering the question, “If the null
hypothesis were true, what is the probability of a sample result as extreme as this
one?” In other words, “What is the p value?” It can be helpful to see that the answer
to this question depends on just two considerations: the strength of the relationship
and the size of the sample. Specifically, the stronger the sample relationship and
the larger the sample, the less likely the result would be if the null hypothesis were
true. That is, the lower the p value. This should make sense. Imagine a study in
which a sample of 500 women is compared with a sample of 500 men in terms of
some psychological characteristic, and Cohen’s d is a strong 0.50. If there were
really no sex difference in the population, then a result this strong based on such a
large sample should seem highly unlikely. Now imagine a similar study in which a
sample of three women is compared with a sample of three men, and Cohen’s d is a
weak 0.10. If there were no sex difference in the population, then a relationship this
weak based on such a small sample should seem likely. And this is precisely why the
null hypothesis would be rejected in the first example and retained in the second.
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Of course, sometimes the result can be weak and the sample large, or the result can
be strong and the sample small. In these cases, the two considerations trade off
against each other so that a weak result can be statistically significant if the sample
is large enough and a strong relationship can be statistically significant even if the
sample is small. Table 13.1 "How Relationship Strength and Sample Size Combine to
Determine Whether a Result Is Statistically Significant" shows roughly how
relationship strength and sample size combine to determine whether a sample
result is statistically significant. The columns of the table represent the three levels
of relationship strength: weak, medium, and strong. The rows represent four
sample sizes that can be considered small, medium, large, and extra large in the
context of psychological research. Thus each cell in the table represents a
combination of relationship strength and sample size. If a cell contains the word
Yes, then this combination would be statistically significant for both Cohen’s d and
Pearson’s r. If it contains the word No, then it would not be statistically significant
for either. There is one cell where the decision for d and r would be different and
another where it might be different depending on some additional considerations,
which are discussed in Section 13.2 "Some Basic Null Hypothesis Tests"

Table 13.1 How Relationship Strength and Sample Size Combine to Determine
Whether a Result Is Statistically Significant

Relationship strength

Sample Size Weak Medium Strong

Small (N = 20) No No

d = Maybe

r = Yes

Medium (N = 50) No Yes Yes

Large (N = 100)

d = Yes

r = No

Yes Yes

Extra large (N = 500) Yes Yes Yes

Although Table 13.1 "How Relationship Strength and Sample Size Combine to
Determine Whether a Result Is Statistically Significant" provides only a rough
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guideline, it shows very clearly that weak relationships based on medium or small
samples are never statistically significant and that strong relationships based on
medium or larger samples are always statistically significant. If you keep this in
mind, you will often know whether a result is statistically significant based on the
descriptive statistics alone. It is extremely useful to be able to develop this kind of
intuitive judgment. One reason is that it allows you to develop expectations about
how your formal null hypothesis tests are going to come out, which in turn allows
you to detect problems in your analyses. For example, if your sample relationship is
strong and your sample is medium, then you would expect to reject the null
hypothesis. If for some reason your formal null hypothesis test indicates otherwise,
then you need to double-check your computations and interpretations. A second
reason is that the ability to make this kind of intuitive judgment is an indication
that you understand the basic logic of this approach in addition to being able to do
the computations.

Statistical Significance Versus Practical Significance

Table 13.1 "How Relationship Strength and Sample Size Combine to Determine
Whether a Result Is Statistically Significant" illustrates another extremely
important point. A statistically significant result is not necessarily a strong one.
Even a very weak result can be statistically significant if it is based on a large
enough sample. This is closely related to Janet Shibley Hyde’s argument about sex
differences (Hyde, 2007).Hyde, J. S. (2007). New directions in the study of gender
similarities and differences. Current Directions in Psychological Science, 16, 259–263.
The differences between women and men in mathematical problem solving and
leadership ability are statistically significant. But the word significant can cause
people to interpret these differences as strong and important—perhaps even
important enough to influence the college courses they take or even who they vote
for. As we have seen, however, these statistically significant differences are actually
quite weak—perhaps even “trivial.”

This is why it is important to distinguish between the statistical significance of a
result and the practical significance of that result. Practical significance11 refers to
the importance or usefulness of the result in some real-world context. Many sex
differences are statistically significant—and may even be interesting for purely
scientific reasons—but they are not practically significant. In clinical practice, this
same concept is often referred to as “clinical significance.” For example, a study on
a new treatment for social phobia might show that it produces a statistically
significant positive effect. Yet this effect still might not be strong enough to justify
the time, effort, and other costs of putting it into practice—especially if easier and
cheaper treatments that work almost as well already exist. Although statistically
significant, this result would be said to lack practical or clinical significance.

11. The importance of a research
result in some real-world
context. Research results can
be statistically significant
without having any practical
significance. In clinical
practice, practical significance
is called “clinical significance.”
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KEY TAKEAWAYS

• Null hypothesis testing is a formal approach to deciding whether a
statistical relationship in a sample reflects a real relationship in the
population or is just due to chance.

• The logic of null hypothesis testing involves assuming that the null
hypothesis is true, finding how likely the sample result would be if this
assumption were correct, and then making a decision. If the sample
result would be unlikely if the null hypothesis were true, then it is
rejected in favor of the alternative hypothesis. If it would not be
unlikely, then the null hypothesis is retained.

• The probability of obtaining the sample result if the null hypothesis
were true (the p value) is based on two considerations: relationship
strength and sample size. Reasonable judgments about whether a
sample relationship is statistically significant can often be made by
quickly considering these two factors.

• Statistical significance is not the same as relationship strength or
importance. Even weak relationships can be statistically significant if
the sample size is large enough. It is important to consider relationship
strength and the practical significance of a result in addition to its
statistical significance.
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EXERCISES

1. Discussion: Imagine a study showing that people who eat more broccoli
tend to be happier. Explain for someone who knows nothing about
statistics why the researchers would conduct a null hypothesis test.

2. Practice: Use Table 13.1 "How Relationship Strength and Sample
Size Combine to Determine Whether a Result Is Statistically
Significant" to decide whether each of the following results is
statistically significant.

a. The correlation between two variables is r = −.78 based on a
sample size of 137.

b. The mean score on a psychological characteristic for women
is 25 (SD = 5) and the mean score for men is 24 (SD = 5). There
were 12 women and 10 men in this study.

c. In a memory experiment, the mean number of items recalled
by the 40 participants in Condition A was 0.50 standard
deviations greater than the mean number recalled by the 40
participants in Condition B.

d. In another memory experiment, the mean scores for
participants in Condition A and Condition B came out exactly
the same!

e. A student finds a correlation of r = .04 between the number of
units the students in his research methods class are taking
and the students’ level of stress.
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13.2 Some Basic Null Hypothesis Tests

LEARNING OBJECTIVES

1. Conduct and interpret one-sample, dependent-samples, and
independent-samples t tests.

2. Interpret the results of one-way, repeated measures, and factorial
ANOVAs.

3. Conduct and interpret null hypothesis tests of Pearson’s r.

In this section, we look at several common null hypothesis testing procedures. The
emphasis here is on providing enough information to allow you to conduct and
interpret the most basic versions. In most cases, the online statistical analysis tools
mentioned in Chapter 12 "Descriptive Statistics" will handle the computations—as
will programs such as Microsoft Excel and SPSS.

The t Test

As we have seen throughout this book, many studies in psychology focus on the
difference between two means. The most common null hypothesis test for this type
of statistical relationship is the t test12. In this section, we look at three types of t
tests that are used for slightly different research designs: the one-sample t test, the
dependent-samples t test, and the independent-samples t test.

One-Sample t Test

The one-sample t test13 is used to compare a sample mean (M) with a hypothetical
population mean (μ0) that provides some interesting standard of comparison. The

null hypothesis is that the mean for the population (µ) is equal to the hypothetical
population mean: μ = μ0. The alternative hypothesis is that the mean for the

population is different from the hypothetical population mean: μ ≠ μ0. To decide

between these two hypotheses, we need to find the probability of obtaining the
sample mean (or one more extreme) if the null hypothesis were true. But finding
this p value requires first computing a test statistic called t. (A test statistic14 is a
statistic that is computed only to help find the p value.) The formula for t is as
follows:

12. A family of null hypothesis
tests used to compare two
means.

13. A null hypothesis test used to
compare one sample mean
with a hypothetical population
mean that provides an
interesting standard of
comparison.

14. In null hypothesis testing, a
statistic such as t or F that is
computed only to help find the
p value for the sample result.
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Again, M is the sample mean and µ0 is the hypothetical population mean of interest.

SD is the sample standard deviation and N is the sample size.

The reason the t statistic (or any test statistic) is useful is that we know how it is
distributed when the null hypothesis is true. As shown in Figure 13.1 "Distribution
of ", this distribution is unimodal and symmetrical, and it has a mean of 0. Its
precise shape depends on a statistical concept called the degrees of freedom, which
for a one-sample t test is N − 1. (There are 24 degrees of freedom for the distribution
shown in Figure 13.1 "Distribution of ".) The important point is that knowing this
distribution makes it possible to find the p value for any t score. Consider, for
example, a t score of +1.50 based on a sample of 25. The probability of a t score at
least this extreme is given by the proportion of t scores in the distribution that are
at least this extreme. For now, let us define extreme as being far from zero in either
direction. Thus the p value is the proportion of t scores that are +1.50 or above or
that are −1.50 or below—a value that turns out to be .14.

Figure 13.1 Distribution of t Scores (With 24 Degrees of Freedom) When the Null Hypothesis Is True

The red vertical lines represent the two-tailed critical values, and the green vertical lines the one-tailed critical
values when α = .05.
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Fortunately, we do not have to deal directly with the distribution of t scores. If we
were to enter our sample data and hypothetical mean of interest into one of the
online statistical tools in Chapter 12 "Descriptive Statistics" or into a program like
SPSS (Excel does not have a one-sample t test function), the output would include
both the t score and the p value. At this point, the rest of the procedure is simple. If
p is less than .05, we reject the null hypothesis and conclude that the population
mean differs from the hypothetical mean of interest. If p is greater than .05, we
retain the null hypothesis and conclude that there is not enough evidence to say
that the population mean differs from the hypothetical mean of interest. (Again,
technically, we conclude only that we do not have enough evidence to conclude that
it does differ.)

If we were to compute the t score by hand, we could use a table like Table 13.2
"Table of Critical Values of " to make the decision. This table does not provide
actual p values. Instead, it provides the critical values15 of t for different degrees of
freedom (df) when α is .05. For now, let us focus on the two-tailed critical values in
the last column of the table. Each of these values should be interpreted as a pair of
values: one positive and one negative. For example, the two-tailed critical values
when there are 24 degrees of freedom are +2.064 and −2.064. These are represented
by the red vertical lines in Figure 13.1 "Distribution of ". The idea is that any t score
below the lower critical value (the left-hand red line in Figure 13.1 "Distribution of
") is in the lowest 2.5% of the distribution, while any t score above the upper critical
value (the right-hand red line) is in the highest 2.5% of the distribution. This means
that any t score beyond the critical value in either direction is in the most extreme
5% of t scores when the null hypothesis is true and therefore has a p value less than
.05. Thus if the t score we compute is beyond the critical value in either direction,
then we reject the null hypothesis. If the t score we compute is between the upper
and lower critical values, then we retain the null hypothesis.

Table 13.2 Table of Critical Values of t When α = .05

Critical value

df One-tailed Two-tailed

3 2.353 3.182

4 2.132 2.776

5 2.015 2.571

6 1.943 2.447

7 1.895 2.365

8 1.860 2.306

15. In null hypothesis testing, the
value or values of a test
statistic that correspond to a p
value of .05 and therefore serve
as a cutoff for deciding to
reject the null hypothesis.
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Critical value

9 1.833 2.262

10 1.812 2.228

11 1.796 2.201

12 1.782 2.179

13 1.771 2.160

14 1.761 2.145

15 1.753 2.131

16 1.746 2.120

17 1.740 2.110

18 1.734 2.101

19 1.729 2.093

20 1.725 2.086

21 1.721 2.080

22 1.717 2.074

23 1.714 2.069

24 1.711 2.064

25 1.708 2.060

30 1.697 2.042

35 1.690 2.030

40 1.684 2.021

45 1.679 2.014

50 1.676 2.009

60 1.671 2.000

70 1.667 1.994

80 1.664 1.990

90 1.662 1.987

100 1.660 1.984

Thus far, we have considered what is called a two-tailed test16, where we reject the
null hypothesis if the t score for the sample is extreme in either direction. This

16. A null hypothesis test (e.g., a t
test or test of Pearson’s r) in
which the null hypothesis is
rejected if the sample result is
extreme in either direction.
Used when the researcher does
not have a strong expectation
about the direction of the
relationship.
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makes sense when we believe that the sample mean might differ from the
hypothetical population mean but we do not have good reason to expect the
difference to go in a particular direction. But it is also possible to do a one-tailed
test17, where we reject the null hypothesis only if the t score for the sample is
extreme in one direction that we specify before collecting the data. This makes
sense when we have good reason to expect the sample mean will differ from the
hypothetical population mean in a particular direction.

Here is how it works. Each one-tailed critical value in Table 13.2 "Table of Critical
Values of " can again be interpreted as a pair of values: one positive and one
negative. A t score below the lower critical value is in the lowest 5% of the
distribution, and a t score above the upper critical value is in the highest 5% of the
distribution. For 24 degrees of freedom, these values are −1.711 and +1.711. (These
are represented by the green vertical lines in Figure 13.1 "Distribution of ".)
However, for a one-tailed test, we must decide before collecting data whether we
expect the sample mean to be lower than the hypothetical population mean, in
which case we would use only the lower critical value, or we expect the sample
mean to be greater than the hypothetical population mean, in which case we would
use only the upper critical value. Notice that we still reject the null hypothesis
when the t score for our sample is in the most extreme 5% of the t scores we would
expect if the null hypothesis were true—so α remains at .05. We have simply
redefined extreme to refer only to one tail of the distribution. The advantage of the
one-tailed test is that critical values are less extreme. If the sample mean differs
from the hypothetical population mean in the expected direction, then we have a
better chance of rejecting the null hypothesis. The disadvantage is that if the
sample mean differs from the hypothetical population mean in the unexpected
direction, then there is no chance at all of rejecting the null hypothesis.

Example One-Sample t Test

Imagine that a health psychologist is interested in the accuracy of college students’
estimates of the number of calories in a chocolate chip cookie. He shows the cookie
to a sample of 10 students and asks each one to estimate the number of calories in
it. Because the actual number of calories in the cookie is 250, this is the
hypothetical population mean of interest (µ0). The null hypothesis is that the mean

estimate for the population (μ) is 250. Because he has no real sense of whether the
students will underestimate or overestimate the number of calories, he decides to
do a two-tailed test. Now imagine further that the participants’ actual estimates are
as follows:

250, 280, 200, 150, 175, 200, 200, 220, 180, 250.

17. A null hypothesis test (e.g., a t
test or test of Pearson’s r) in
which the null hypothesis is
rejected only if the sample
result is extreme in one
direction specified before the
data are collected. Used when
the researcher has a strong
expectation about the direction
of the relationship.
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The mean estimate for the sample (M) is 212.00 calories and the standard deviation
(SD) is 39.17. The health psychologist can now compute the t score for his sample:

If he enters the data into one of the online analysis tools or uses SPSS, it would also
tell him that the two-tailed p value for this t score (with 10 − 1 = 9 degrees of
freedom) is .013. Because this is less than .05, the health psychologist would reject
the null hypothesis and conclude that college students tend to underestimate the
number of calories in a chocolate chip cookie. If he computes the t score by hand, he
could look at Table 13.2 "Table of Critical Values of " and see that the critical value
of t for a two-tailed test with 9 degrees of freedom is ±2.262. The fact that his t score
was more extreme than this critical value would tell him that his p value is less than
.05 and that he should reject the null hypothesis.

Finally, if this researcher had gone into this study with good reason to expect that
college students underestimate the number of calories, then he could have done a
one-tailed test instead of a two-tailed test. The only thing this would change is the
critical value, which would be −1.833. This slightly less extreme value would make it
a bit easier to reject the null hypothesis. However, if it turned out that college
students overestimate the number of calories—no matter how much they
overestimate it—the researcher would not have been able to reject the null
hypothesis.

The Dependent-Samples t Test

The dependent-samples t test18 (sometimes called the paired-samples t test) is
used to compare two means for the same sample tested at two different times or
under two different conditions. This makes it appropriate for pretest-posttest
designs or within-subjects experiments. The null hypothesis is that the means at
the two times or under the two conditions are the same in the population. The
alternative hypothesis is that they are not the same. This test can also be one-tailed
if the researcher has good reason to expect the difference goes in a particular
direction.

It helps to think of the dependent-samples t test as a special case of the one-sample
t test. However, the first step in the dependent-samples t test is to reduce the two

18. A null hypothesis test used to
compare two means for one
sample measured at two
different times or under two
different conditions—as in a
pretest-posttest or within-
subjects design.
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scores for each participant to a single difference score19 by taking the difference
between them. At this point, the dependent-samples t test becomes a one-sample t
test on the difference scores. The hypothetical population mean (µ0) of interest is 0

because this is what the mean difference score would be if there were no difference
on average between the two times or two conditions. We can now think of the null
hypothesis as being that the mean difference score in the population is 0 (µ0 = 0)

and the alternative hypothesis as being that the mean difference score in the
population is not 0 (µ0 ≠ 0).

Example Dependent-Samples t Test

Imagine that the health psychologist now knows that people tend to underestimate
the number of calories in junk food and has developed a short training program to
improve their estimates. To test the effectiveness of this program, he conducts a
pretest-posttest study in which 10 participants estimate the number of calories in a
chocolate chip cookie before the training program and then again afterward.
Because he expects the program to increase the participants’ estimates, he decides
to do a one-tailed test. Now imagine further that the pretest estimates are

230, 250, 280, 175, 150, 200, 180, 210, 220, 190

and that the posttest estimates (for the same participants in the same order) are

250, 260, 250, 200, 160, 200, 200, 180, 230, 240.

The difference scores, then, are as follows:

+20, +10, −30, +25, +10, 0, +20, −30, +10, +50.

Note that it does not matter whether the first set of scores is subtracted from the
second or the second from the first as long as it is done the same way for all
participants. In this example, it makes sense to subtract the pretest estimates from
the posttest estimates so that positive difference scores mean that the estimates
went up after the training and negative difference scores mean the estimates went
down.

The mean of the difference scores is 8.50 with a standard deviation of 27.27. The
health psychologist can now compute the t score for his sample as follows:

19. The difference between an
individual’s score at one time
or under one condition and
that individual’s score at a
second time or under a second
condition. The dependent-
samples t test is in essence a
one-sample t test on a set of
difference scores.
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If he enters the data into one of the online analysis tools or uses Excel or SPSS, it
would tell him that the one-tailed p value for this t score (again with 10 − 1 = 9
degrees of freedom) is .148. Because this is greater than .05, he would retain the null
hypothesis and conclude that the training program does not increase people’s
calorie estimates. If he were to compute the t score by hand, he could look at Table
13.2 "Table of Critical Values of " and see that the critical value of t for a one-tailed
test with 9 degrees of freedom is +1.833. (It is positive this time because he was
expecting a positive mean difference score.) The fact that his t score was less
extreme than this critical value would tell him that his p value is greater than .05
and that he should fail to reject the null hypothesis.

The Independent-Samples t Test

The independent-samples t test20 is used to compare the means of two separate
samples (M1 and M2). The two samples might have been tested under different

conditions in a between-subjects experiment, or they could be preexisting groups in
a correlational design (e.g., women and men, extroverts and introverts). The null
hypothesis is that the means of the two populations are the same: µ1 = µ2. The

alternative hypothesis is that they are not the same: µ1 ≠ µ2. Again, the test can be

one-tailed if the researcher has good reason to expect the difference goes in a
particular direction.

The t statistic here is a bit more complicated because it must take into account two
sample means, two standard deviations, and two sample sizes. The formula is as
follows:

Notice that this formula includes squared standard deviations (the variances) that
appear inside the square root symbol. Also, lowercase n1 and n2 refer to the sample

sizes in the two groups or condition (as opposed to capital N, which generally refers

20. A null hypothesis test used to
compare means for two
separate samples—as in a
between-subjects design.
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to the total sample size). The only additional thing to know here is that there are N
− 2 degrees of freedom for the independent-samples t test.

Example Independent-Samples t Test

Now the health psychologist wants to compare the calorie estimates of people who
regularly eat junk food with the estimates of people who rarely eat junk food. He
believes the difference could come out in either direction so he decides to conduct a
two-tailed test. He collects data from a sample of eight participants who eat junk
food regularly and seven participants who rarely eat junk food. The data are as
follows:

Junk food eaters: 180, 220, 150, 85, 200, 170, 150, 190

Non–junk food eaters: 200, 240, 190, 175, 200, 300, 240

The mean for the junk food eaters is 220.71 with a standard deviation of 41.23. The
mean for the non–junk food eaters is 168.12 with a standard deviation of 42.66. He
can now compute his t score as follows:

If he enters the data into one of the online analysis tools or uses Excel or SPSS, it
would tell him that the two-tailed p value for this t score (with 15 − 2 = 13 degrees of
freedom) is .015. Because this is less than .05, the health psychologist would reject
the null hypothesis and conclude that people who eat junk food regularly make
lower calorie estimates than people who eat it rarely. If he were to compute the t
score by hand, he could look at Table 13.2 "Table of Critical Values of " and see that
the critical value of t for a two-tailed test with 13 degrees of freedom is ±2.160. The
fact that his t score was more extreme than this critical value would tell him that
his p value is less than .05 and that he should fail to retain the null hypothesis.
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The Analysis of Variance

When there are more than two groups or condition means to be compared, the most
common null hypothesis test is the analysis of variance (ANOVA)21. In this section,
we look primarily at the one-way ANOVA22, which is used for between-subjects
designs with a single independent variable. We then briefly consider some other
versions of the ANOVA that are used for within-subjects and factorial research
designs.

One-Way ANOVA

The one-way ANOVA is used to compare the means of more than two samples (M1,
M2…MG) in a between-subjects design. The null hypothesis is that all the means are

equal in the population: µ1= µ2 =…= µG. The alternative hypothesis is that not all the

means in the population are equal.

The test statistic for the ANOVA is called F. It is a ratio of two estimates of the
population variance based on the sample data. One estimate of the population
variance is called the mean squares between groups (MSB)

23 and is based on the

differences among the sample means. The other is called the mean squares within
groups (MSW)24 and is based on the differences among the scores within each

group. The F statistic is the ratio of the MSB to the MSW and can therefore be

expressed as follows:

Again, the reason that F is useful is that we know how it is distributed when the null
hypothesis is true. As shown in Figure 13.2 "Distribution of the ", this distribution is
unimodal and positively skewed with values that cluster around 1. The precise
shape of the distribution depends on both the number of groups and the sample
size, and there is a degrees of freedom value associated with each of these. The
between-groups degrees of freedom is the number of groups minus one: dfB = (G − 1).

The within-groups degrees of freedom is the total sample size minus the number of
groups: dfW = N − G. Again, knowing the distribution of F when the null hypothesis is

true allows us to find the p value.

F =
MSB

MSW

21. A null hypothesis test used to
compare means for more than
two groups or conditions.

22. A null hypothesis test used to
compare more than two means
in a between-subjects design
with one independent variable.

23. In an analysis of variance, an
estimate for the population
variance based only on
differences among the group or
condition means.

24. In an analysis of variance, an
estimate of the population
variance based on the
variability within each group
or condition.
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Figure 13.2 Distribution of the F Ratio With 2 and 37 Degrees of Freedom When the Null Hypothesis Is True

The red vertical line represents the critical value when α is .05.

The online tools in Chapter 12 "Descriptive Statistics" and statistical software such
as Excel and SPSS will compute F and find the p value. If p is less than .05, then we
reject the null hypothesis and conclude that there are differences among the group
means in the population. If p is greater than .05, then we retain the null hypothesis
and conclude that there is not enough evidence to say that there are differences. In
the unlikely event that we would compute F by hand, we can use a table of critical
values like Table 13.3 "Table of Critical Values of " to make the decision. The idea is
that any F ratio greater than the critical value has a p value of less than .05. Thus if
the F ratio we compute is beyond the critical value, then we reject the null
hypothesis. If the F ratio we compute is less than the critical value, then we retain
the null hypothesis.

Table 13.3 Table of Critical Values of F When α = .05

dfB

dfW 2 3 4

8 4.459 4.066 3.838

9 4.256 3.863 3.633

10 4.103 3.708 3.478

11 3.982 3.587 3.357
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dfB

12 3.885 3.490 3.259

13 3.806 3.411 3.179

14 3.739 3.344 3.112

15 3.682 3.287 3.056

16 3.634 3.239 3.007

17 3.592 3.197 2.965

18 3.555 3.160 2.928

19 3.522 3.127 2.895

20 3.493 3.098 2.866

21 3.467 3.072 2.840

22 3.443 3.049 2.817

23 3.422 3.028 2.796

24 3.403 3.009 2.776

25 3.385 2.991 2.759

30 3.316 2.922 2.690

35 3.267 2.874 2.641

40 3.232 2.839 2.606

45 3.204 2.812 2.579

50 3.183 2.790 2.557

55 3.165 2.773 2.540

60 3.150 2.758 2.525

65 3.138 2.746 2.513

70 3.128 2.736 2.503

75 3.119 2.727 2.494

80 3.111 2.719 2.486

85 3.104 2.712 2.479

90 3.098 2.706 2.473

95 3.092 2.700 2.467

100 3.087 2.696 2.463
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Example One-Way ANOVA

Imagine that the health psychologist wants to compare the calorie estimates of
psychology majors, nutrition majors, and professional dieticians. He collects the
following data:

Psych majors: 200, 180, 220, 160, 150, 200, 190, 200

Nutrition majors: 190, 220, 200, 230, 160, 150, 200, 210, 195

Dieticians: 220, 250, 240, 275, 250, 230, 200, 240

The means are 187.50 (SD = 23.14), 195.00 (SD = 27.77), and 238.13 (SD = 22.35),
respectively. So it appears that dieticians made substantially more accurate
estimates on average. The researcher would almost certainly enter these data into a
program such as Excel or SPSS, which would compute F for him and find the p value.
Table 13.4 "Typical One-Way ANOVA Output From Excel" shows the output of the
one-way ANOVA function in Excel for these data. This is referred to as an ANOVA
table. It shows that MSB is 5,971.88, MSW is 602.23, and their ratio, F, is 9.92. The p

value is .0009. Because this is below .05, the researcher would reject the null
hypothesis and conclude that the mean calorie estimates for the three groups are
not the same in the population. Notice that the ANOVA table also includes the “sum
of squares” (SS) for between groups and for within groups. These values are
computed on the way to finding MSB and MSW but are not typically reported by the

researcher. Finally, if the researcher were to compute the F ratio by hand, he could
look at Table 13.3 "Table of Critical Values of " and see that the critical value of F
with 2 and 21 degrees of freedom is 3.467 (the same value in Table 13.4 "Typical
One-Way ANOVA Output From Excel" under Fcrit). The fact that his t score was more

extreme than this critical value would tell him that his p value is less than .05 and
that he should reject the null hypothesis.

Table 13.4 Typical One-Way ANOVA Output From Excel

ANOVA

Source of variation SS df MS F p-value Fcrit

Between groups 11,943.75 2 5,971.875 9.916234 0.000928 3.4668

Within groups 12,646.88 21 602.2321

Total 24,590.63 23
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ANOVA Elaborations
Post Hoc Comparisons

When we reject the null hypothesis in a one-way ANOVA, we conclude that the
group means are not all the same in the population. But this can indicate different
things. With three groups, it can indicate that all three means are significantly
different from each other. Or it can indicate that one of the means is significantly
different from the other two, but the other two are not significantly different from
each other. It could be, for example, that the mean calorie estimates of psychology
majors, nutrition majors, and dieticians are all significantly different from each
other. Or it could be that the mean for dieticians is significantly different from the
means for psychology and nutrition majors, but the means for psychology and
nutrition majors are not significantly different from each other. For this reason,
statistically significant one-way ANOVA results are typically followed up with a
series of post hoc comparisons25 of selected pairs of group means to determine
which are different from which others.

One approach to post hoc comparisons would be to conduct a series of independent-
samples t tests comparing each group mean to each of the other group means. But
there is a problem with this approach. In general, if we conduct a t test when the
null hypothesis is true, we have a 5% chance of mistakenly rejecting the null
hypothesis (see Section 13.3 "Additional Considerations" for more on such Type I
errors). If we conduct several t tests when the null hypothesis is true, the chance of
mistakenly rejecting at least one null hypothesis increases with each test we
conduct. Thus researchers do not usually make post hoc comparisons using
standard t tests because there is too great a chance that they will mistakenly reject
at least one null hypothesis. Instead, they use one of several modified t test
procedures—among them the Bonferonni procedure, Fisher’s least significant
difference (LSD) test, and Tukey’s honestly significant difference (HSD) test. The
details of these approaches are beyond the scope of this book, but it is important to
understand their purpose. It is to keep the risk of mistakenly rejecting a true null
hypothesis to an acceptable level (close to 5%).

Repeated-Measures ANOVA

Recall that the one-way ANOVA is appropriate for between-subjects designs in
which the means being compared come from separate groups of participants. It is
not appropriate for within-subjects designs in which the means being compared
come from the same participants tested under different conditions or at different
times. This requires a slightly different approach, called the repeated-measures
ANOVA26. The basics of the repeated-measures ANOVA are the same as for the one-
way ANOVA. The main difference is that measuring the dependent variable multiple
times for each participant allows for a more refined measure of MSW. Imagine, for

25. Statistical comparison of
selected pairs of group or
condition means following a
statistically significant ANOVA
result. Usually done using one
of several modified t-test
procedures.

26. A null hypothesis test used to
compare means for one sample
at more than two times or
under more than two
conditions in a within-subjects
design.
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example, that the dependent variable in a study is a measure of reaction time. Some
participants will be faster or slower than others because of stable individual
differences in their nervous systems, muscles, and other factors. In a between-
subjects design, these stable individual differences would simply add to the
variability within the groups and increase the value of MSW. In a within-subjects

design, however, these stable individual differences can be measured and
subtracted from the value of MSW. This lower value of MSW means a higher value of

F and a more sensitive test.

Factorial ANOVA

When more than one independent variable is included in a factorial design, the
appropriate approach is the factorial ANOVA27. Again, the basics of the factorial
ANOVA are the same as for the one-way and repeated-measures ANOVAs. The main
difference is that it produces an F ratio and p value for each main effect and for
each interaction. Returning to our calorie estimation example, imagine that the
health psychologist tests the effect of participant major (psychology vs. nutrition)
and food type (cookie vs. hamburger) in a factorial design. A factorial ANOVA would
produce separate F ratios and p values for the main effect of major, the main effect
of food type, and the interaction between major and food. Appropriate
modifications must be made depending on whether the design is between subjects,
within subjects, or mixed.

Testing Pearson’s r

For relationships between quantitative variables, where Pearson’s r is used to
describe the strength of those relationships, the appropriate null hypothesis test is
a test of Pearson’s r. The basic logic is exactly the same as for other null hypothesis
tests. In this case, the null hypothesis is that there is no relationship in the
population. We can use the Greek lowercase rho (ρ) to represent the relevant
parameter: ρ = 0. The alternative hypothesis is that there is a relationship in the
population: ρ ≠ 0. As with the t test, this test can be two-tailed if the researcher has
no expectation about the direction of the relationship or one-tailed if the
researcher expects the relationship to go in a particular direction.

It is possible to use Pearson’s r for the sample to compute a t score with N − 2
degrees of freedom and then to proceed as for a t test. However, because of the way
it is computed, Pearson’s r can also be treated as its own test statistic. The online
statistical tools and statistical software such as Excel and SPSS generally compute
Pearson’s r and provide the p value associated with that value of Pearson’s r. As
always, if the p value is less than .05, we reject the null hypothesis and conclude
that there is a relationship between the variables in the population. If the p value is

27. A null hypothesis test used to
test both main effects and
interactions in a factorial
design.
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greater than .05, we retain the null hypothesis and conclude that there is not
enough evidence to say there is a relationship in the population. If we compute
Pearson’s r by hand, we can use a table like Table 13.5 "Table of Critical Values of
Pearson’s ", which shows the critical values of r for various samples sizes when α is
.05. A sample value of Pearson’s r that is more extreme than the critical value is
statistically significant.

Table 13.5 Table of Critical Values of Pearson’s r When α = .05

Critical value of r

N One-tailed Two-tailed

5 .805 .878

10 .549 .632

15 .441 .514

20 .378 .444

25 .337 .396

30 .306 .361

35 .283 .334

40 .264 .312

45 .248 .294

50 .235 .279

55 .224 .266

60 .214 .254

65 .206 .244

70 .198 .235

75 .191 .227

80 .185 .220

85 .180 .213

90 .174 .207

95 .170 .202

100 .165 .197
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Example Test of Pearson’s r

Imagine that the health psychologist is interested in the correlation between
people’s calorie estimates and their weight. He has no expectation about the
direction of the relationship, so he decides to conduct a two-tailed test. He
computes the correlation for a sample of 22 college students and finds that
Pearson’s r is −.21. The statistical software he uses tells him that the p value is .348.
It is greater than .05, so he retains the null hypothesis and concludes that there is
no relationship between people’s calorie estimates and their weight. If he were to
compute Pearson’s r by hand, he could look at Table 13.5 "Table of Critical Values of
Pearson’s " and see that the critical value for 22 − 2 = 20 degrees of freedom is .444.
The fact that Pearson’s r for the sample is less extreme than this critical value tells
him that the p value is greater than .05 and that he should retain the null
hypothesis.

KEY TAKEAWAYS

• To compare two means, the most common null hypothesis test is the t
test. The one-sample t test is used for comparing one sample mean with
a hypothetical population mean of interest, the dependent-samples t
test is used to compare two means in a within-subjects design, and the
independent-samples t test is used to compare two means in a between-
subjects design.

• To compare more than two means, the most common null hypothesis
test is the analysis of variance (ANOVA). The one-way ANOVA is used for
between-subjects designs with one independent variable, the repeated-
measures ANOVA is used for within-subjects designs, and the factorial
ANOVA is used for factorial designs.

• A null hypothesis test of Pearson’s r is used to compare a sample value of
Pearson’s r with a hypothetical population value of 0.
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EXERCISES

1. Practice: Use one of the online tools, Excel, or SPSS to reproduce the
one-sample t test, dependent-samples t test, independent-samples t test,
and one-way ANOVA for the four sets of calorie estimation data
presented in this section.

2. Practice: A sample of 25 college students rated their friendliness on a
scale of 1 (Much Lower Than Average) to 7 (Much Higher Than Average).
Their mean rating was 5.30 with a standard deviation of 1.50. Conduct a
one-sample t test comparing their mean rating with a hypothetical
mean rating of 4 (Average). The question is whether college students
have a tendency to rate themselves as friendlier than average.

3. Practice: Decide whether each of the following Pearson’s r values is
statistically significant for both a one-tailed and a two-tailed test. (a)
The correlation between height and IQ is +.13 in a sample of 35. (b) For a
sample of 88 college students, the correlation between how disgusted
they felt and the harshness of their moral judgments was +.23. (c) The
correlation between the number of daily hassles and positive mood is
−.43 for a sample of 30 middle-aged adults.
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13.3 Additional Considerations

LEARNING OBJECTIVES

1. Define Type I and Type II errors, explain why they occur, and identify
some steps that can be taken to minimize their likelihood.

2. Define statistical power, explain its role in the planning of new studies,
and use online tools to compute the statistical power of simple research
designs.

3. List some criticisms of conventional null hypothesis testing, along with
some ways of dealing with these criticisms.

In this section, we consider a few other issues related to null hypothesis testing,
including some that are useful in planning studies and interpreting results. We even
consider some long-standing criticisms of null hypothesis testing, along with some
steps that researchers in psychology have taken to address them.

Errors in Null Hypothesis Testing

In null hypothesis testing, the researcher tries to draw a reasonable conclusion
about the population based on the sample. Unfortunately, this conclusion is not
guaranteed to be correct. This is illustrated by Figure 13.3 "Two Types of Correct
Decisions and Two Types of Errors in Null Hypothesis Testing". The rows of this
table represent the two possible decisions that we can make in null hypothesis
testing: to reject or retain the null hypothesis. The columns represent the two
possible states of the world: The null hypothesis is false or it is true. The four cells
of the table, then, represent the four distinct outcomes of a null hypothesis test.
Two of the outcomes—rejecting the null hypothesis when it is false and retaining it
when it is true—are correct decisions. The other two—rejecting the null hypothesis
when it is true and retaining it when it is false—are errors.
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Figure 13.3 Two Types of Correct Decisions and Two Types of Errors in Null Hypothesis Testing

Rejecting the null hypothesis when it is true is called a Type I error28. This means
that we have concluded that there is a relationship in the population when in fact
there is not. Type I errors occur because even when there is no relationship in the
population, sampling error alone will occasionally produce an extreme result. In
fact, when the null hypothesis is true and α is .05, we will mistakenly reject the null
hypothesis 5% of the time. (This is why α is sometimes referred to as the “Type I
error rate.”) Retaining the null hypothesis when it is false is called a Type II
error29. This means that we have concluded that there is no relationship in the
population when in fact there is. In practice, Type II errors occur primarily because
the research design lacks adequate statistical power to detect the relationship (e.g.,
the sample is too small). We will have more to say about statistical power shortly.

In principle, it is possible to reduce the chance of a Type I error by setting α to
something less than .05. Setting it to .01, for example, would mean that if the null
hypothesis is true, then there is only a 1% chance of mistakenly rejecting it. But
making it harder to reject true null hypotheses also makes it harder to reject false
ones and therefore increases the chance of a Type II error. Similarly, it is possible to
reduce the chance of a Type II error by setting α to something greater than .05 (e.g.,
.10). But making it easier to reject false null hypotheses also makes it easier to
reject true ones and therefore increases the chance of a Type I error. This provides
some insight into why the convention is to set α to .05. There is some agreement
among researchers that level of α keeps the rates of both Type I and Type II errors
at acceptable levels.

The possibility of committing Type I and Type II errors has several important
implications for interpreting the results of our own and others’ research. One is

28. In null hypothesis testing,
rejecting the null hypothesis
when it is true.

29. In null hypothesis testing,
failing to reject the null
hypothesis when it is false.

Chapter 13 Inferential Statistics

13.3 Additional Considerations 370



that we should be cautious about interpreting the results of any individual study
because there is a chance that it reflects a Type I or Type II error. This is why
researchers consider it important to replicate their studies. Each time researchers
replicate a study and find a similar result, they rightly become more confident that
the result represents a real phenomenon and not just a Type I or Type II error.

Another issue related to Type I errors is the so-called file drawer problem30

(Rosenthal, 1979).Rosenthal, R. (1979). The file drawer problem and tolerance for
null results. Psychological Bulletin, 83, 638–641. The idea is that when researchers
obtain statistically significant results, they tend to submit them for publication, and
journal editors and reviewers tend to accept them. But when researchers obtain
nonsignificant results, they tend not to submit them for publication, or if they do
submit them, journal editors and reviewers tend not to accept them. Researchers
end up putting these nonsignificant results away in a file drawer (or nowadays, in a
folder on their hard drive). One effect of this is that the published literature
probably contains a higher proportion of Type I errors than we might expect on the
basis of statistical considerations alone. Even when there is a relationship between
two variables in the population, the published research literature is likely to
overstate the strength of that relationship. Imagine, for example, that the
relationship between two variables in the population is positive but weak (e.g., ρ =
+.10). If several researchers conduct studies on this relationship, sampling error is
likely to produce results ranging from weak negative relationships (e.g., r = −.10) to
moderately strong positive ones (e.g., r = +.40). But because of the file drawer
problem, it is likely that only those studies producing moderate to strong positive
relationships are published. The result is that the effect reported in the published
literature tends to be stronger than it really is in the population.

The file drawer problem is a difficult one because it is a product of the way
scientific research has traditionally been conducted and published. One solution
might be for journal editors and reviewers to evaluate research submitted for
publication without knowing the results of that research. The idea is that if the
research question is judged to be interesting and the method judged to be sound,
then a nonsignificant result should be just as important and worthy of publication
as a significant one. Short of such a radical change in how research is evaluated for
publication, researchers can still take pains to keep their nonsignificant results and
share them as widely as possible (e.g., at professional conferences). Many scientific
disciplines now have journals devoted to publishing nonsignificant results. In
psychology, for example, there is the Journal of Articles in Support of the Null
Hypothesis (http://www.jasnh.com).

30. The fact that statistically
significant results are more
likely to be submitted and
accepted for publication than
nonsignificant results.
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Statistical Power

The statistical power31 of a research design is the probability of rejecting the null
hypothesis given the sample size and expected relationship strength. For example,
the statistical power of a study with 50 participants and an expected Pearson’s r of
+.30 in the population is .59. That is, there is a 59% chance of rejecting the null
hypothesis if indeed the population correlation is +.30. Statistical power is the
complement of the probability of committing a Type II error. So in this example, the
probability of committing a Type II error would be 1 − .59 = .41. Clearly, researchers
should be interested in the power of their research designs if they want to avoid
making Type II errors. In particular, they should make sure their research design
has adequate power before collecting data. A common guideline is that a power of
.80 is adequate. This means that there is an 80% chance of rejecting the null
hypothesis for the expected relationship strength.

The topic of how to compute power for various research designs and null
hypothesis tests is beyond the scope of this book. However, there are online tools
that allow you to do this by entering your sample size, expected relationship
strength, and α level for various hypothesis tests (see “Computing Power Online”).
In addition, Table 13.6 "Sample Sizes Needed to Achieve Statistical Power of .80 for
Different Expected Relationship Strengths for an Independent-Samples " shows the
sample size needed to achieve a power of .80 for weak, medium, and strong
relationships for a two-tailed independent-samples t test and for a two-tailed test of
Pearson’s r. Notice that this table amplifies the point made earlier about
relationship strength, sample size, and statistical significance. In particular, weak
relationships require very large samples to provide adequate statistical power.

Table 13.6 Sample Sizes Needed to Achieve Statistical Power of .80 for Different
Expected Relationship Strengths for an Independent-Samples t Test and a Test of
Pearson’s r

Null Hypothesis Test

Relationship Strength Independent-Samples t Test Test of Pearson’s r

Strong (d = .80, r = .50) 52 28

Medium (d = .50, r = .30) 128 84

Weak (d = .20, r = .10) 788 782

What should you do if you discover that your research design does not have
adequate power? Imagine, for example, that you are conducting a between-subjects
experiment with 20 participants in each of two conditions and that you expect a

31. The probability of rejecting the
null hypothesis for a given
sample size and expected
relationship strength.
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medium difference (d = .50) in the population. The statistical power of this design is
only .34. That is, even if there is a medium difference in the population, there is
only about a one in three chance of rejecting the null hypothesis and about a two in
three chance of committing a Type II error. Given the time and effort involved in
conducting the study, this probably seems like an unacceptably low chance of
rejecting the null hypothesis and an unacceptably high chance of committing a
Type II error.

Given that statistical power depends primarily on relationship strength and sample
size, there are essentially two steps you can take to increase statistical power:
increase the strength of the relationship or increase the sample size. Increasing the
strength of the relationship can sometimes be accomplished by using a stronger
manipulation or by more carefully controlling extraneous variables to reduce the
amount of noise in the data (e.g., by using a within-subjects design rather than a
between-subjects design). The usual strategy, however, is to increase the sample
size. For any expected relationship strength, there will always be some sample large
enough to achieve adequate power.

Computing Power Online

The following links are to tools that allow you to compute statistical power for
various research designs and null hypothesis tests by entering information
about the expected relationship strength, the sample size, and the α level. They
also allow you to compute the sample size necessary to achieve your desired
level of power (e.g., .80). The first is an online tool. The second is a free
downloadable program called G*Power.

• Russ Lenth’s Power and Sample Size Page:
http://www.stat.uiowa.edu/~rlenth/Power/index.html

• G*Power: http://www.psycho.uni-duesseldorf.de/aap/projects/
gpower

Problems With Null Hypothesis Testing, and Some Solutions

Again, null hypothesis testing is the most common approach to inferential statistics
in psychology. It is not without its critics, however. In fact, in recent years the
criticisms have become so prominent that the American Psychological Association
convened a task force to make recommendations about how to deal with them
(Wilkinson & Task Force on Statistical Inference, 1999).Wilkinson, L., & Task Force
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on Statistical Inference. (1999). Statistical methods in psychology journals:
Guidelines and explanations. American Psychologist, 54, 594–604. In this section, we
consider some of the criticisms and some of the recommendations.

Criticisms of Null Hypothesis Testing

Some criticisms of null hypothesis testing focus on researchers’ misunderstanding
of it. We have already seen, for example, that the p value is widely misinterpreted as
the probability that the null hypothesis is true. (Recall that it is really the
probability of the sample result if the null hypothesis were true.) A closely related
misinterpretation is that 1 − p is the probability of replicating a statistically
significant result. In one study, 60% of a sample of professional researchers thought
that a p value of .01—for an independent-samples t test with 20 participants in each
sample—meant there was a 99% chance of replicating the statistically significant
result (Oakes, 1986).Oakes, M. (1986). Statistical inference: A commentary for the social
and behavioral sciences. Chichester, UK: Wiley. Our earlier discussion of power should
make it clear that this is far too optimistic. As Table 13.5 "Table of Critical Values of
Pearson’s " shows, even if there were a large difference between means in the
population, it would require 26 participants per sample to achieve a power of .80.
And the program G*Power shows that it would require 59 participants per sample
to achieve a power of .99.

Another set of criticisms focuses on the logic of null hypothesis testing. To many,
the strict convention of rejecting the null hypothesis when p is less than .05 and
retaining it when p is greater than .05 makes little sense. This criticism does not
have to do with the specific value of .05 but with the idea that there should be any
rigid dividing line between results that are considered significant and results that
are not. Imagine two studies on the same statistical relationship with similar
sample sizes. One has a p value of .04 and the other a p value of .06. Although the
two studies have produced essentially the same result, the former is likely to be
considered interesting and worthy of publication and the latter simply not
significant. This convention is likely to prevent good research from being published
and to contribute to the file drawer problem.

Yet another set of criticisms focus on the idea that null hypothesis testing—even
when understood and carried out correctly—is simply not very informative. Recall
that the null hypothesis is that there is no relationship between variables in the
population (e.g., Cohen’s d or Pearson’s r is precisely 0). So to reject the null
hypothesis is simply to say that there is some nonzero relationship in the
population. But this is not really saying very much. Imagine if chemistry could tell
us only that there is some relationship between the temperature of a gas and its
volume—as opposed to providing a precise equation to describe that relationship.
Some critics even argue that the relationship between two variables in the
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population is never precisely 0 if it is carried out to enough decimal places. In other
words, the null hypothesis is never literally true. So rejecting it does not tell us
anything we did not already know!

To be fair, many researchers have come to the defense of null hypothesis testing.
One of them, Robert Abelson, has argued that when it is correctly understood and
carried out, null hypothesis testing does serve an important purpose (Abelson,
1995).Abelson, R. P. (1995). Statistics as principled argument. Mahwah, NJ: Erlbaum.
Especially when dealing with new phenomena, it gives researchers a principled way
to convince others that their results should not be dismissed as mere chance
occurrences.

What to Do?

Even those who defend null hypothesis testing recognize many of the problems
with it. But what should be done? Some suggestions now appear in the Publication
Manual. One is that each null hypothesis test should be accompanied by an effect
size measure such as Cohen’s d or Pearson’s r. By doing so, the researcher provides
an estimate of how strong the relationship in the population is—not just whether
there is one or not. (Remember that the p value cannot substitute as a measure of
relationship strength because it also depends on the sample size. Even a very weak
result can be statistically significant if the sample is large enough.)

Another suggestion is to use confidence intervals rather than null hypothesis tests.
A confidence interval32 around a statistic is a range of values that is computed in
such a way that some percentage of the time (usually 95%) the population
parameter will lie within that range. For example, a sample of 20 college students
might have a mean calorie estimate for a chocolate chip cookie of 200 with a 95%
confidence interval of 160 to 240. In other words, there is a very good chance that
the mean calorie estimate for the population of college students lies between 160
and 240. Advocates of confidence intervals argue that they are much easier to
interpret than null hypothesis tests. Another advantage of confidence intervals is
that they provide the information necessary to do null hypothesis tests should
anyone want to. In this example, the sample mean of 200 is significantly different at
the .05 level from any hypothetical population mean that lies outside the
confidence interval. So the confidence interval of 160 to 240 tells us that the sample
mean is statistically significantly different from a hypothetical population mean of
250.

Finally, there are more radical solutions to the problems of null hypothesis testing
that involve using very different approaches to inferential statistics. Bayesian
statistics33, for example, is an approach in which the researcher specifies the

32. A range of values computed in
such a way that some specified
percentage of the time (usually
95%) the population parameter
of interest will lie within that
range.

33. An alternative approach to
inferential statistics in which
the researcher specifies the
probability that the null
hypothesis and important
alternative hypotheses are true
before conducting a study,
conducts the study, and then
computes revised probabilities
based on the data.
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probability that the null hypothesis and any important alternative hypotheses are
true before conducting the study, conducts the study, and then updates the
probabilities based on the data. It is too early to say whether this approach will
become common in psychological research. For now, null hypothesis
testing—supported by effect size measures and confidence intervals—remains the
dominant approach.

KEY TAKEAWAYS

• The decision to reject or retain the null hypothesis is not guaranteed to
be correct. A Type I error occurs when one rejects the null hypothesis
when it is true. A Type II error occurs when one fails to reject the null
hypothesis when it is false.

• The statistical power of a research design is the probability of rejecting
the null hypothesis given the expected relationship strength in the
population and the sample size. Researchers should make sure that their
studies have adequate statistical power before conducting them.

• Null hypothesis testing has been criticized on the grounds that
researchers misunderstand it, that it is illogical, and that it is
uninformative. Others argue that it serves an important
purpose—especially when used with effect size measures, confidence
intervals, and other techniques. It remains the dominant approach to
inferential statistics in psychology.

EXERCISES

1. Discussion: A researcher compares the effectiveness of two forms
of psychotherapy for social phobia using an independent-
samples t test.

a. Explain what it would mean for the researcher to commit a
Type I error.

b. Explain what it would mean for the researcher to commit a
Type II error.

2. Discussion: Imagine that you conduct a t test and the p value is .02. How
could you explain what this p value means to someone who is not
already familiar with null hypothesis testing? Be sure to avoid the
common misinterpretations of the p value.
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