This is “Appendix: A General Formulation of Discounted Present Value”, section 9.6 from the book Theory and Applications of Microeconomics (v. 1.0). For details on it (including licensing), click here.

For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. You may also download a PDF copy of this book (30 MB) or just this chapter (1 MB), suitable for printing or most e-readers, or a .zip file containing this book's HTML files (for use in a web browser offline).

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

9.6 Appendix: A General Formulation of Discounted Present Value

This section presents a more general way of thinking about discounted present value. The economic idea is the same as the one we encountered when discussing the pricing of orange trees. Here the idea is to isolate the central ideas of discounted present value. We then use this more general formulation to talk about the pricing of stocks in an asset market.

We begin by defining the t-period real interest factor between the present date and some future date t years from now. The t-period real interest factor is simply the amount by which you must discount when calculating a discounted present value of a flow benefit (already adjusted for inflation) that will be received t years from now.

Suppose we have an asset that will provide real dividend payments every year for t years. Suppose that Dt is the real dividend in period t, and Rt is the real interest factor from the current period to period t. Then the price of the asset is given by

price =  dividend in year 1  1-period real interest factor  + dividend in year 2 2-period real interest factor  + ... +dividend in year T  T-period real interest factor

or

q=D1 R1 +D2 R2 ...+DT RT .

All we did was to divide the dividends (D) due in period t by the interest factor Rt and then add them together.

If interest rates are constant over time, then the interest factors are easy to determine. Suppose that the annual real interest rate for one year is r. Then R1 = (1 + r) because this is the factor we would use to discount from next year to the present. What about discounting dividends two periods from now? To discount D2 to period 1, we would divide by (1 + r). To discount that back again to the current period we would again divide by (1 + r). So to discount D2 to the present we divide D2 by (1 + r) × (1 + r) = (1 + r)2. That is, R2 = (1 + r)2. In general, Rt = (1 + r)t when interest rates are constant.

If real interest rates are not constant over time, the calculation of Rt is more tedious. If R1 = (1 + r1), then R2 = (1 + r1) × (1 + r2), where r2 is the real interest rate between period 1 and period 2. In the calculation of R2, you can think of (1 + r2) as discounting the flow from period 2 to period 1 and then (1 + r1) as discounting the flow from period 1 to period 0.