This is “Nuclear Chemistry”, chapter 11 from the book Introduction to Chemistry: General, Organic, and Biological (v. 1.0). For details on it (including licensing), click here.

For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. You may also download a PDF copy of this book (72 MB) or just this chapter (2 MB), suitable for printing or most e-readers, or a .zip file containing this book's HTML files (for use in a web browser offline).

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

Chapter 11 Nuclear Chemistry

Opening Essay

Most of us may not be aware of a device in our homes that guards our safety and, at the same time, depends on radioactivity to operate properly. This device is a smoke detector.

A typical smoke detector contains an electric circuit that includes two metal plates about 1 cm apart. A battery in the circuit creates a voltage between the plates. Next to the plates is a small disk containing a tiny amount (∼0.0002 g) of the radioactive element americium (Am). The radioactivity of the americium ionizes the air between the plates, causing a tiny current to constantly flow between them. (This constant drain on the battery explains why the batteries in smoke detectors should be replaced on a regular basis, whether the alarm has been triggered or not.)

When particles of smoke from a fire enter the smoke detector, they interfere with the ions between the metal plates, interrupting the tiny flow of current. When the current drops beneath a set value, another circuit triggers a loud alarm, warning of the possible presence of fire.

Although radioactive, the americium in a smoke detector is embedded in plastic and is not harmful unless the plastic package is taken apart, which is unlikely. Although many people experience an unfounded fear of radioactivity, smoke detectors provide an application of radioactivity that saves thousands of lives every year.

Many people think of nuclear chemistry in connection with the nuclear power industry and atomic bombs but do not realize that most smoke detectors rely on nuclear chemistry and save countless lives every year. The applications of nuclear chemistry may be more widespread than you think.

Most chemists pay little attention to the nucleus of an atom except to consider the number of protons it contains because that determines an element’s identity. However, in nuclear chemistry, the composition of the nucleus and the changes that occur there are very important.

Applications of nuclear chemistry may be more widespread than you realize. Many people are aware of nuclear power plants and nuclear bombs, but nuclear chemistry also has applications ranging from smoke detectors to medicine, from the sterilization of food to the analysis of ancient artifacts. In this chapter, we will examine some of the basic concepts of nuclear chemistry and some of the nuclear reactions that are important in our everyday lives.