This is “Chemical Equilibrium”, chapter 13 from the book Beginning Chemistry (v. 1.0). For details on it (including licensing), click here.

For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. You may also download a PDF copy of this book (40 MB) or just this chapter (633 KB), suitable for printing or most e-readers, or a .zip file containing this book's HTML files (for use in a web browser offline).

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

Chapter 13 Chemical Equilibrium

Opening Essay

Imagine you are stranded in a rowboat in the middle of the ocean. Suddenly, your boat springs a small leak, and you need to bail out water. You grab a bucket and begin to bail. After a few minutes, your efforts against the leak keep the water to only about half an inch, but any further bailing doesn’t change the water level; the leak brings in as much water as you bail out.

You are at equilibrium. Two opposing processes have reached the same speed, and there is no more overall change in the process.

Chemical reactions are like that as well. Most of them come to an equilibrium. The actual position of the equilibrium—whether it favors the reactants or the products—is characteristic of a chemical reaction; it is difficult to see just by looking at the balanced chemical equation. But chemistry has tools to help you understand the equilibrium of chemical reactions—the focus of our study in this chapter.

So far in this text, when we present a chemical reaction, we have implicitly assumed that the reaction goes to completion. Indeed, our stoichiometric calculations were based on this; when we asked how much of a product is produced when so much of a reactant reacts, we are assuming that all of a reactant reacts. However, this is usually not the case; many reactions do not go to completion, and many chemists have to deal with that. In this chapter, we will study this phenomenon and see ways in which we can affect the extent of chemical reactions.

13.1 Chemical Equilibrium

Learning Objectives

  1. Define chemical equilibrium.
  2. Recognize chemical equilibrium as a dynamic process.

Consider the following reaction occurring in a closed container (so that no material can go in or out):

H2 + I2 → 2HI

This is simply the reaction between elemental hydrogen and elemental iodine to make hydrogen iodide. The way the equation is written, we are led to believe that the reaction goes to completion, that all the H2 and the I2 react to make HI.

However, this is not the case. The reverse chemical reaction is also taking place:

2HI → H2 + I2

It acts to undo what the first reaction does. Eventually, the reverse reaction proceeds so quickly that it matches the speed of the forward reaction. When that happens, any continued overall reaction stops: the reaction has reached chemical equilibriumThe point at which forward and reverse chemical reactions balance each other’s progress. (sometimes just spoken as equilibrium; plural equilibria), the point at which the forward and reverse processes balance each other’s progress.

Because two opposing processes are occurring at once, it is conventional to represent an equilibrium using a double arrow, like this:

H2+ I22HI 

The double arrow implies that the reaction is going in both directions. Note that the reaction must still be balanced.

Example 1

Write the equilibrium equation that exists between calcium carbonate as a reactant and calcium oxide and carbon dioxide as products.

Solution

As this is an equilibrium situation, a double arrow is used. The equilibrium equation is written as follows:

CaCO3CaO + CO2

Test Yourself

Write the equilibrium equation between elemental hydrogen and elemental oxygen as reactants and water as the product.

Answer

2H2+ O22H2

One thing to note about equilibrium is that the reactions do not stop; both the forward reaction and the reverse reaction continue to occur. They both occur at the same rate, so any overall change by one reaction is cancelled by the reverse reaction. We say that chemical equilibrium is dynamic, rather than static. Also, because both reactions are occurring simultaneously, the equilibrium can be written backward. For example, representing an equilibrium as

H2+ I22HI 

is the same thing as representing the same equilibrium as

2HIH2+ I2

The reaction must be at equilibrium for this to be the case, however.

Key Takeaways

  • Chemical reactions eventually reach equilibrium, a point at which forward and reverse reactions balance each other’s progress.
  • Chemical equilibria are dynamic: the chemical reactions are always occurring; they just cancel each other’s progress.

Exercises

  1. Define chemical equilibrium. Give an example.

  2. Explain what is meant when it is said that chemical equilibrium is dynamic.

  3. Write the equilibrium equation between elemental hydrogen and elemental chlorine as reactants and hydrochloric acid as the product.

  4. Write the equilibrium equation between iron(III) sulfate as the reactant and iron(III) oxide and sulfur trioxide as the products.

  5. Graphite and diamond are two forms of elemental carbon. Write the equilibrium equation between these two forms in two different ways.

  6. At 1,500 K, iodine molecules break apart into iodine atoms. Write the equilibrium equation between these two species in two different ways.

Answers

  1. the situation when the forward and reverse chemical reactions occur, leading to no additional net change in the reaction position; H2+ I22HI (answers will vary)

  2. H2+ Cl22HCl

  3. C (gra)C (dia); C (dia)C (gra)

13.2 The Equilibrium Constant

Learning Objectives

  1. Explain the importance of the equilibrium constant.
  2. Construct an equilibrium constant expression for a chemical reaction.

In the mid 1860s, Norwegian scientists C. M. Guldberg and P. Waage noted a peculiar relationship between the amounts of reactants and products in an equilibrium. No matter how many reactants they started with, a certain ratio of reactants and products was achieved at equilibrium. Today, we call this observation the law of mass actionThe relationship of the amounts of reactants and products at equilibrium.. It relates the amounts of reactants and products at equilibrium for a chemical reaction. For a general chemical reaction occurring in solution,

aA + bBcC + dD

the equilibrium constantA numerical value that relates to the ratio of products and reactants at equilibrium., also known as Keq, is defined by the following expression:

Keq=[C]c[D]d[A]a[B]b

where [A] is the molar concentration of species A at equilibrium, and so forth. The coefficients a, b, c, and d in the chemical equation become exponents in the expression for Keq. The Keq is a characteristic numerical value for a given reaction at a given temperature; that is, each chemical reaction has its own characteristic Keq. The concentration of each reactant and product in a chemical reaction at equilibrium is related; the concentrations cannot be random values, but they depend on each other. The numerator of the expression for Keq has the concentrations of every product (however many products there are), while the denominator of the expression for Keq has the concentrations of every reactant, leading to the common products over reactants definition for the Keq.

Let us consider a simple example. Suppose we have this equilibrium:

AB

There is one reactant, one product, and the coefficients on each are just 1 (assumed, not written). The Keq expression for this equilibrium is

Keq=[B][A]

(Exponents of 1 on each concentration are understood.) Suppose the numerical value of Keq for this chemical reaction is 2.0. If [B] = 4.0 M, then [A] must equal 2.0 M so that the value of the fraction equals 2.0:

Keq=[B][A]=4.02.0=2.0

By convention, the units are understood to be M and are omitted from the Keq expression. Suppose [B] were 6.0 M. For the Keq value to remain constant (it is, after all, called the equilibrium constant), then [A] would have to be 3.0 M at equilibrium:

Keq=[B][A]=6.03.0=2.0

If [A] were not equal to 3.0 M, the reaction would not be at equilibrium, and a net reaction would occur until that ratio was indeed 2.0. At that point, the reaction is at equilibrium, and any net change would cease. (Recall, however, that the forward and reverse reactions do not stop because chemical equilibrium is dynamic.)

The issue is the same with more complex expressions for the Keq; only the mathematics becomes more complex. Generally speaking, given a value for the Keq and all but one concentration at equilibrium, the missing concentration can be calculated.

Example 2

Given the following reaction:

H2+ I22HI

If the equilibrium [HI] is 0.75 M and the equilibrium [H2] is 0.20 M, what is the equilibrium [I2] if the Keq is 0.40?

Solution

We start by writing the Keq expression. Using the products over reactants approach, the Keq expression is as follows:

Keq=[HI]2[H2][I2]

Note that [HI] is squared because of the coefficient 2 in the balanced chemical equation. Substituting for the equilibrium [H2] and [HI] and for the given value of Keq:

0.40=(0.75)2(0.20)[I2]

To solve for [I2], we have to do some algebraic rearrangement: divide the 0.40 into both sides of the equation and multiply both sides of the equation by [I2]. This brings [I2] into the numerator of the left side and the 0.40 into the denominator of the right side:

[I2]=(0.75)2(0.20)(0.40)

Solving,

[I2] = 7.0 M

The concentration unit is assumed to be molarity. This value for [I2] can be easily verified by substituting 0.75, 0.20, and 7.0 into the expression for Keq and evaluating: you should get 0.40, the numerical value of Keq (and you do).

Test Yourself

Given the following reaction:

H2+ I22HI

If the equilibrium [HI] is 0.060 M and the equilibrium [I2] is 0.90 M, what is the equilibrium [H2] if the Keq is 0.40?

Answer

0.010 M

In some types of equilibrium problems, square roots, cube roots, or even higher roots need to be analyzed to determine a final answer. Make sure you know how to perform such operations on your calculator; if you do not know, ask your instructor for assistance.

Example 3

The following reaction is at equilibrium:

N2+ 3H22NH3

The Keq at a particular temperature is 13.7. If the equilibrium [N2] is 1.88 M and the equilibrium [NH3] is 6.62 M, what is the equilibrium [H2]?

Solution

We start by writing the Keq expression from the balanced chemical equation:

Keq=[ NH 3]2[N2][H2]3

Substituting for the known equilibrium concentrations and the Keq, this becomes

13.7=(6.62)2(1.88)[H2]3

Rearranging algebraically and then evaluating the numerical expression, we get

[H2]3=(6.22)2(1.88)(13.7)=1.502112129

To solve for [H2], we need to take the cube root of the equation. Performing this operation, we get

[H2] = 1.15 M

You should verify that this is correct using your own calculator to confirm that you know how to do a cube root correctly.

Test Yourself

The following reaction is at equilibrium:

N2+ 3H22NH3

The Keq at a particular temperature is 13.7. If the equilibrium [N2] is 0.055 M and the equilibrium [H2] is 1.62 M, what is the equilibrium [NH3]?

Answer

1.79 M

The Keq was defined earlier in terms of concentrations. For gas-phase reactions, the Keq can also be defined in terms of the partial pressures of the reactants and products, Pi. For the gas-phase reaction

aA(g) + bB(g)cC(g) + dD(g)

the pressure-based equilibrium constant, KP, is defined as follows:

KP=PCcPDdPAaPBb

where PA is the partial pressure of substance A at equilibrium in atmospheres, and so forth. As with the concentration-based equilibrium constant, the units are omitted when substituting into the expression for KP.

Example 4

What is the KP for this reaction, given the equilibrium partial pressures of 0.664 atm for NO2 and 1.09 for N2O4?

2NO2(g)N2O4(g)

Solution

Write the KP expression for this reaction:

KP=PN2O4P NO 22

Then substitute the equilibrium partial pressures into the expression and evaluate:

KP=(1.09)(0.664)2=2.47

Test Yourself

What is the KP for this reaction, given the equilibrium partial pressures of 0.44 atm for H2, 0.22 atm for Cl2, and 2.98 atm for HCl?

H2 + Cl22HCl

Answer

91.7

There is a simple relationship between Keq (based on concentration units) and KP (based on pressure units):

KP=Keq(RT)Δn

where R is the ideal gas law constant (in units of L·atm/mol·K), T is the absolute temperature, and Δn is the change in the number of moles of gas in the balanced chemical equation, defined as ngas,prodsngas,rcts. Note that this equation implies that if the number of moles of gas are the same in reactants and products, Keq = KP.

Example 5

What is the KP at 25°C for this reaction if the Keq is 4.2 × 10−2?

N2(g) + 3H2(g)2NH3(g)

Solution

Before we use the relevant equation, we need to do two things: convert the temperature to kelvins and determine Δn. Converting the temperature is easy:

T = 25 + 273 = 298 K

To determine the change in the number of moles of gas, take the number of moles of gaseous products and subtract the number of moles of gaseous reactants. There are 2 mol of gas as product and 4 mol of gas of reactant:

Δn = 2 − 4 = −2 mol

Note that Δn is negative. Now we can substitute into our equation, using R = 0.08205 L·atm/mol·K. The units are omitted for clarity:

KP = (4.2 × 10−2)(0.08205)(298)−2

Solving,

KP = 7.0 × 10−5

Test Yourself

What is the KP at 25°C for this reaction if the Keq is 98.3?

I2(g)2I(g) 

Answer

2.40 × 103

Finally, we recognize that many chemical reactions involve substances in the solid or liquid phases. For example, a particular chemical reaction is represented as follows:

2NaHCO3(s)Na2CO3(s) + CO2(g) + H2O(

This chemical equation includes all three phases of matter. This kind of equilibrium is called a heterogeneous equilibriumAn equilibrium in which more than one phase of reactants or products is present. because there is more than one phase present.

The rule for heterogeneous equilibria is as follows: Do not include the concentrations of pure solids and pure liquids in Keq expressions. Only partial pressures for gas-phase substances or concentrations in solutions are included in the expressions of equilibrium constants. As such, the equilibrium constant expression for this reaction would simply be

KP=PCO2

because the two solids and one liquid would not appear in the expression.

Key Takeaways

  • Every chemical equilibrium can be characterized by an equilibrium constant, known as Keq.
  • The Keq and KP expressions are formulated as amounts of products divided by amounts of reactants; each amount (either a concentration or a pressure) is raised to the power of its coefficient in the balanced chemical equation.
  • Solids and liquids do not appear in the expression for the equilibrium constant.

Exercises

  1. Define the law of mass action.

  2. What is an equilibrium constant for a chemical reaction? How is it constructed?

  3. Write the Keq expression for each reaction.

    1. H2 + Cl22HCl
    2. NO + NO2N2O3
  4. Write the Keq expression for each reaction.

    1. C2H5OH + NaIC2H5I + NaOH
    2. PCl3 + Cl2PCl5
  5. Write the KP expression for each reaction.

    1. 2H2(g) + O2(g)2H2O(g)
    2. 2H2O2(g)2H2O(g) + O2(g)
  6. Write the KP expression for each reaction.

    1. CH4(g) + 2O2(g)CO2(g) + 2H2O(g)
    2. CH4(g) + 4Cl2(g)CCl4(g) + 4HCl(g)
  7. The following reaction is at equilibrium:

    PBr3 + Br2PBr5

    The equilibrium [Br2] and [PBr5] are 2.05 M and 0.55 M, respectively. If the Keq is 1.65, what is the equilibrium [PBr3]?

  8. The following reaction is at equilibrium:

    CO + Cl2CoCl2

    The equilibrium [CO] and [Cl2] are 0.088 M and 0.103 M, respectively. If the Keq is 0.225, what is the equilibrium [COCl2]?

  9. The following reaction is at equilibrium:

    CH4 + 2Cl2CH2Cl2 + 2HCl

    If [CH4] is 0.250 M, [Cl2] is 0.150 M, and [CH2Cl2] is 0.175 M at equilibrium, what is [HCl] at equilibrium if the Keq is 2.30?

  10. The following reaction is at equilibrium:

    4HBr + O22H2O + 2Br2

    If [HBr] is 0.100 M, [O2] is 0.250 M, and [H2O] is 0.0500 M at equilibrium, what is [Br2] at equilibrium if the Keq is 0.770?

  11. Write the KP expression for the following gas-phase reaction:

    4NO2(g) + O2(g)2N2O5(g)
  12. Write the KP expression for the following gas-phase reaction:

    ClO(g) + O3(g)ClO2(g) + O2(g)
  13. What is the equilibrium partial pressure of COBr2 if the equilibrium partial pressures of CO and Br2 are 0.666 atm and 0.235 atm and the KP for this equilibrium is 4.08?

    CO(g) + Br2(g)COBr2(g)
  14. What is the equilibrium partial pressure of O3 if the equilibrium partial pressure of O2 is 0.0044 atm and KP for this equilibrium is 0.00755?

    3O2(g)2O3(g)
  15. Calculate the KP for this reaction at 298 K if the Keq = 1.76 × 10−3.

    3O2(g)2O3(g)
  16. Calculate the KP for this reaction at 310 K if the Keq = 6.22 × 103.

    4NO2(g) + O2(g)2N2O5(g)
  17. Calculate the Keq for this reaction if the KP = 5.205 × 10−3 at 660°C.

    CO(g)+ F2(g)COF2(g)
  18. Calculate the Keq for this reaction if the KP = 78.3 at 100°C.

    4HCl(g) + O2(g)2H2O(g) + 2Cl2(g)
  19. Write the correct Keq expression for this reaction.

    NaOH(aq) + HCl(aq)NaCl(aq) + H2O()
  20. Write the correct Keq expression for this reaction.

    AgNO3(aq) + NaCl(aq)AgCl(s) + NaNO3(aq)
  21. Write the correct KP expression for this reaction.

    CaCO3(s)CaO(s) + CO2(g)
  22. Write the correct KP expression for this reaction.

    C2H2(g) + 2I2(s)C2H2I4(g)

Answers

  1. the relationship between the concentrations of reactants and products of a chemical reaction at equilibrium

    1. Keq=[HCl]2[H2][Cl2]
    2. Keq=[N2O3][NO][NO2]
    1. KP=PH2O2PH22PO2
    2. KP=PH2O2PO2PH2O22
  2. 0.163 M

  3. 0.272 M

  4. KP=PN2O52P NO 24PO2

  5. 0.639 atm

  6. 7.20 × 10−5

  7. Keq = 3.98 × 10−1

  8. Keq=[NaCl][NaOH][HCl]

  9. KP = PCO2

13.3 Shifting Equilibria: Le Chatelier’s Principle

Learning Objectives

  1. Define Le Chatelier’s principle.
  2. Predict the direction of shift for an equilibrium under stress.

Once equilibrium is established, the reaction is over, right? Not exactly. An experimenter has some ability to affect the equilibrium.

Chemical equilibria can be shifted by changing the conditions that the system experiences. We say that we “stress” the equilibrium. When we stress the equilibrium, the chemical reaction is no longer at equilibrium, and the reaction starts to move back toward equilibrium in such a way as to decrease the stress. The formal statement is called Le Chatelier’s principleIf an equilibrium is stressed, then the reaction shifts to reduce the stress.: If an equilibrium is stressed, then the reaction shifts to reduce the stress.

There are several ways to stress an equilibrium. One way is to add or remove a product or a reactant in a chemical reaction at equilibrium. When additional reactant is added, the equilibrium shifts to reduce this stress: it makes more product. When additional product is added, the equilibrium shifts to reactants to reduce the stress. If reactant or product is removed, the equilibrium shifts to make more reactant or product, respectively, to make up for the loss.

Example 6

Given this reaction at equilibrium:

N2+ 3H22NH3

In which direction—toward reactants or toward products—does the reaction shift if the equilibrium is stressed by each change?

  1. H2 is added.
  2. NH3 is added.
  3. NH3 is removed.

Solution

  1. If H2 is added, there is now more reactant, so the reaction will shift toward products to reduce the added H2.
  2. If NH3 is added, there is now more product, so the reaction will shift toward reactants to reduce the added NH3.
  3. If NH3 is removed, there is now less product, so the reaction will shift toward products to replace the product removed.

Test Yourself

Given this reaction at equilibrium:

CO(g) + Br2(g)COBr2(g)

In which direction—toward reactants or toward products—does the reaction shift if the equilibrium is stressed by each change?

  1. Br2 is removed.
  2. COBr2 is added.

Answers

  1. toward reactants
  2. toward reactants

It is worth noting that when reactants or products are added or removed, the value of the Keq does not change. The chemical reaction simply shifts, in a predictable fashion, to reestablish concentrations so that the Keq expression reverts to the correct value.

How does an equilibrium react to a change in pressure? Pressure changes do not markedly affect the solid or liquid phases. However, pressure strongly impacts the gas phase. Le Chatelier’s principle implies that a pressure increase shifts an equilibrium to the side of the reaction with the fewer number of moles of gas, while a pressure decrease shifts an equilibrium to the side of the reaction with the greater number of moles of gas. If the number of moles of gas is the same on both sides of the reaction, pressure has no effect.

Example 7

What is the effect on this equilibrium if pressure is increased?

N2(g) + 3H2(g)2NH3(g)

Solution

According to Le Chatelier’s principle, if pressure is increased, then the equilibrium shifts to the side with the fewer number of moles of gas. This particular reaction shows a total of 4 mol of gas as reactants and 2 mol of gas as products, so the reaction shifts toward the products side.

Test Yourself

What is the effect on this equilibrium if pressure is decreased?

3O2(g)2O3(g)

Answer

Reaction shifts toward reactants.

What is the effect of temperature changes on an equilibrium? It depends on whether the reaction is endothermic or exothermic. Recall that endothermic means that energy is absorbed by a chemical reaction, while exothermic means that energy is given off by the reaction. As such, energy can be thought of as a reactant or a product, respectively, of a reaction:

endothermic: energy + reactants → products exothermic: reactants → products + energy

Because temperature is a measure of the energy of the system, increasing temperature can be thought of as adding energy. The reaction will react as if a reactant or a product is being added and will act accordingly by shifting to the other side. For example, if the temperature is increased for an endothermic reaction, essentially a reactant is being added, so the equilibrium shifts toward products. Decreasing the temperature is equivalent to decreasing a reactant (for endothermic reactions) or a product (for exothermic reactions), and the equilibrium shifts accordingly.

Example 8

Predict the effect of increasing the temperature on this equilibrium.

PCl3 + Cl2PCl5 + 60 kJ

Solution

Because energy is listed as a product, it is being produced, so the reaction is exothermic. If the temperature is increasing, a product is being added to the equilibrium, so the equilibrium shifts to minimize the addition of extra product: it shifts back toward reactants.

Test Yourself

Predict the effect of decreasing the temperature on this equilibrium.

N2O4 + 57 kJ2NO2

Answer

Equilibrium shifts toward reactants.

In the case of temperature, the value of the equilibrium has changed because the Keq is dependent on temperature. That is why equilibria shift with changes in temperature.

A catalystA substance that increases the speed of a reaction. is a substance that increases the speed of a reaction. Overall, a catalyst is not a reactant and is not used up, but it still affects how fast a reaction proceeds. However, a catalyst does not affect the extent or position of a reaction at equilibrium. It helps a reaction achieve equilibrium faster.

Chemistry Is Everywhere: Equilibria in the Garden

Hydrangeas are common flowering plants around the world. Although many hydrangeas are white, there is one common species (Hydrangea macrophylla) whose flowers can be either red or blue, as shown in the accompanying figure. How is it that a plant can have different colored flowers like this?

Figure 13.1 Garden Equilibria

This species of hydrangea has flowers that can be either red or blue. Why the color difference?

Interestingly, the color of the flowers is due to the acidity of the soil that the hydrangea is planted in. An astute gardener can adjust the pH of the soil and actually change the color of the flowers. However, it is not the H+ or OH ions that affect the color of the flowers. Rather, it is the presence of aluminum that causes the color change.

The solubility of aluminum in soil—and thus the ability of plants to absorb it—is dependent on the acidity of the soil. If the soil is relatively acidic, the aluminum is more soluble, and plants can absorb it more easily. Under these conditions, hydrangea flowers are blue as Al ions interact with anthocyanin pigments in the plant. In more basic soils, aluminum is less soluble, and under these conditions the hydrangea flowers are red. Gardeners who change the pH of their soils to change the color of their hydrangea flowers are therefore employing Le Chatelier’s principle: the amount of acid in the soil changes the equilibrium of aluminum solubility, which in turn affects the color of the flowers.

Key Takeaways

  • Le Chatelier’s principle addresses how an equilibrium shifts when the conditions of an equilibrium are changed.
  • The direction of shift can be predicted for changes in concentrations, temperature, or pressure.
  • Catalysts do not affect the position of an equilibrium; they help reactions achieve equilibrium faster.

Exercises

  1. Define Le Chatelier’s principle.

  2. What is meant by a stress? What are some of the ways an equilibrium can be stressed?

  3. Given this equilibrium, predict the direction of shift for each stress.

    H2(g) + I2(s) + 53 kJ2HI(g)
    1. decreased temperature
    2. increased pressure
    3. removal of HI
  4. Given this equilibrium, predict the direction of shift for each stress.

    H2(g) + F2(g)2HF(g) + 546 kJ
    1. increased temperature
    2. addition of H2
    3. decreased pressure
  5. Given this equilibrium, predict the direction of shift for each stress.

    2SO2(g) + O2(g)2SO3(g) + 196 kJ
    1. removal of SO3
    2. addition of O2
    3. decreased temperature
  6. Given this equilibrium, predict the direction of shift for each stress listed.

    CO2(g) + C(s) + 171 kJ2CO(g)
    1. addition of CO
    2. increased pressure
    3. addition of a catalyst
  7. The synthesis of NH3 uses this chemical reaction.

    N2(g) + 3H2(g)2NH3(g) + 92 kJ

    Identify three stresses that can be imposed on the equilibrium to maximize the amount of NH3.

  8. The synthesis of CaCO3 uses this chemical reaction.

    CaO(s) + CO2(g)CaCO3(s) + 180 kJ

    Identify three stresses that can be imposed on the equilibrium to maximize the amount of CaCO3.

Answers

  1. When an equilibrium is stressed, the equilibrium shifts to minimize that stress.

    1. toward reactants
    2. toward reactants
    3. toward products
    1. toward products
    2. toward products
    3. toward products
  2. increased pressure, decreased temperature, removal of NH3

13.4 Calculating Equilibrium Constant Values

Learning Objective

  1. Calculate equilibrium concentrations from the values of the initial amounts and the Keq.

There are some circumstances in which, given some initial amounts and the Keq, you will have to determine the concentrations of all species when equilibrium is achieved. Such calculations are not difficult to do, especially if a consistent approach is applied. We will consider such an approach here.

Suppose we have this simple equilibrium. Its associated Keq is 4.0, and the initial concentration of each reactant is 1.0 M:

H2(g)+Cl2(g)2HCl(g)Keq=4.01.0 M1.0 M

Because we have concentrations for the reactants but not the products, we presume that the reaction will proceed in the forward direction to make products. But by how much will it proceed? We don’t know, so let us assign it a variable. Let us assume that x M H2 reacts as the reaction goes to equilibrium. This means that at equilibrium, we have (1.0 − x) M H2 left over.

According to the balanced chemical equation, H2 and Cl2 react in a 1:1 ratio. How do we know that? The coefficients of these two species in the balanced chemical equation are 1 (unwritten, of course). This means that if x M H2 reacts, x M Cl2 reacts as well. If we start with 1.0 M Cl2 at the beginning and we react x M, we have (1.0 − x) M Cl2 left at equilibrium.

How much HCl is made? We start with zero, but we also see that 2 mol of HCl are made for every mole of H2 (or Cl2) that reacts (from the coefficients in the balanced chemical equation), so if we lose x M H2, we gain 2x M HCl. So now we know the equilibrium concentrations of our species:

H2(g)+Cl2(g)2HCl(g)Keq=4.0(1.0x)M(1.0x)M2xM

We can substitute these concentrations into the Keq expression for this reaction and combine it with the known value of Keq:

Keq=[HCl]2[H2][Cl2]=(2x)2(1x)(1x)=4.0

This is an equation in one variable, so we should be able to solve for the unknown value. This expression may look formidable, but first we can simplify the denominator and write it as a perfect square as well:

(2x)2(1x)2=4.0

The fraction is a perfect square, as is the 4.0 on the right. So we can take the square root of both sides:

2x1x=2.0

Now we rearrange and solve (be sure you can follow each step):

2x=2.02.0x4x=2.0x=0.50

Now we have to remind ourselves what x is—the amount of H2 and Cl2 that reacted—and 2x is the equilibrium [HCl]. To determine the equilibrium concentrations, we need to go back and evaluate the expressions 1 − x and 2x to get the equilibrium concentrations of our species:

1.0 − x = 1.0 − 0.50 = 0.50 M = [H2] = [Cl2] 2x = 2(0.50) = 1.0 M = [HCl]

The units are assumed to be molarity. To check, we simply substitute these concentrations and verify that we get the numerical value of the Keq, in this case 4.0:

(1.0)2(0.50)(0.50)=4.0

We formalize this process by introducing the ICE chart, where ICE stands for initial, change, and equilibrium. The initial values go in the first row of the chart. The change values, usually algebraic expressions because we do not yet know their exact numerical values, go in the next row. However, the change values must be in the proper stoichiometric ratio as indicated by the balanced chemical equation. Finally, the equilibrium expressions in the last row are a combination of the initial value and the change value for each species. The expressions in the equilibrium row are substituted into the Keq expression, which yields an algebraic equation that we try to solve.

The ICE chart for the above example would look like this:

H2(g) + Cl2(g) 2HCl(g) Keq = 4.0
I 1.0   1.0   0  
C x x +2x
E 1.0 − x 1.0 − x +2x

Substituting the last row into the expression for the Keq yields

Keq=[HCl]2[H2][Cl2]=(2x)2(1x)(1x)=4.0

which, of course, is the same expression we have already solved and yields the same answers for the equilibrium concentrations. The ICE chart is a more formalized way to do these types of problems. The + sign is included explicitly in the change row of the ICE chart to avoid any confusion.

Sometimes when an ICE chart is set up and the Keq expression is constructed, a more complex algebraic equation will result. One of the more common equations has an x2 term in it and is called a quadratic equation. There will be two values possible for the unknown x, and for a quadratic equation with the general formula ax2bxc = 0 (where a, b, and c are the coefficients of the quadratic equation), the two possible values are as follows:

x=b±b24ac2a

One value of x is the + sign used in the numerator, and the other value of x is the − sign used in the numerator. In this case, one value of x typically makes no sense as an answer and can be discarded as physically impossible, leaving only one possible value and the resulting set of concentrations. Example 9 illustrates this.

Example 9

Set up an ICE chart and solve for the equilibrium concentrations in this chemical reaction.

COI 2(g)0.55MCO(g)0+I2(g)0K eq =0.00088

Solution

The ICE chart is set up like this. First, the initial values:

COI2(g) CO(g) + I2(g)
I 0.55   0   0
C
E

Some of the COI2 will be lost, but how much? We don’t know, so we represent it by the variable x. So x M COI2 will be lost, and for each COI2 that is lost, x M CO and x M I2 will be produced. These expressions go into the change row:

COI2(g) CO(g) + I2(g)
I 0.55   0   0
C x +x +x
E

At equilibrium, the resulting concentrations will be a combination of the initial amount and the changes:

COI2(g) CO(g) + I2(g)
I 0.55   0   0
C x +x +x
E 0.55 − x +x +x

The expressions in the equilibrium row go into the Keq expression:

Keq=[CO][I2][COI2]=0.00088=(x)(x)(0.55x)

We rearrange this into a quadratic equation that equals 0:

0.000484 − 0.00088x = x2 x2 + 0.00088x − 0.000484 = 0

Now we use the quadratic equation to solve for the two possible values of x:

x=0.00088± (0.00088) 24(1)(0.000484)2(1)

Evaluate for both signs in the numerator—first the + sign and then the − sign:

x = 0.0216 or x = −0.0224

Because x is the final concentration of both CO and I2, it cannot be negative, so we discount the second numerical answer as impossible. Thus x = 0.0216.

Going back to determine the final concentrations using the expressions in the E row of our ICE chart, we have

[COI2] = 0.55 − x = 0.55 − 0.0216 = 0.53 M [CO] = x = 0.0216 M [I2] = x = 0.0216 M

You can verify that these numbers are correct by substituting them into the Keq expression and evaluating and comparing to the known Keq value.

Test Yourself

Set up an ICE chart and solve for the equilibrium concentrations in this chemical reaction.

N2H2(g)0.075MN2(g)0+H2(g)0K eq =0.052

Answer

The completed ICE chart is as follows:

N2H2(g) N2(g) + H2(g)
I 0.075   0   0
C x +x +x
E 0.075 − x +x +x

Solving for x gives the equilibrium concentrations as [N2H2] = 0.033 M; [N2] = 0.042 M; and [H2] = 0.042 M

Key Takeaway

  • An ICE chart is a convenient way to determine equilibrium concentrations from starting amounts.

Exercises

  1. Describe the three parts of an ICE chart.

  2. What is the relationship between the equilibrium row in an ICE chart and the other two rows?

  3. Set up (but do not solve) an ICE chart for this reaction, given the initial conditions.

    3O2(g)2O3(g)0.075 M
  4. Set up (but do not solve) an ICE chart for this reaction, given the initial conditions.

    CH4(g)+2O2(g)CO2(g)+2H2O(g)0.750M0.450M
  5. Given that pure solids and liquids do not appear in Keq expressions, set up the ICE chart for this reaction, given the initial conditions.

    CH4(g)+2O2(g)CO2(g)+2H2O()0.0060M0.055M
  6. Given that pure solids and liquids do not appear in Keq expressions, set up the ICE chart for this reaction, given the initial conditions.

    N2H4()+O2(g)N2(g)+2H2O()2.33M1.09M
  7. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    HCN(g)2.00MHNC(g)K eq =4.50
  8. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    IF3(g)+F2(g)IF5(g)Keq=7.591.0M0.50M
  9. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    N2O3(g)0.0663MNO(g)+ NO 2(g)K eq =2.50
  10. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    CO(g)+H2O(g)CO2(g)+H2(g)Keq=16.00.750M0.750M
  11. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    H2S(g)0.882MH2(g)+S(s)K eq =0.055
  12. Determine the equilibrium concentrations for this chemical reaction with the given Keq.

    2AgCl(s)+F2(g)2AgF(s)+Cl2(g)Keq=1.2×1021.99M

Answers

  1. I = initial concentrations; C = change in concentrations; E = equilibrium concentrations

  2. 3O2 2O3
    I 0.075   0
    C −3x +2x
    E 0.075 − 3x +2x
  3. CH4 + 2O2 CO2 + 2H2O
    I 0.0060   0.055   0   0
    C x −2x +x
    E 0.0060 − x 0.055 − 2x +x
  4. [HCN] = 0.364 M; [HNC] = 1.64 M

  5. [N2O3] = 0.0017 M; [NO] = [NO2] = 0.0646 M

  6. [H2S] = 0.836 M; [H2] = 0.046 M

13.5 Some Special Types of Equilibria

Learning Objective

  1. Identify several special chemical equilibria and construct their Ka expressions.

In one sense, all chemical equilibria are treated the same. However, there are several classes of reactions that are noteworthy because of either the identities of the reactants and products or the form of the Keq expression.

Weak Acids and Bases

In Chapter 12 "Acids and Bases", we noted how some acids and bases are strong and some are weak. If an acid or base is strong, it is ionized 100% in H2O. HCl(aq) is an example of a strong acid:

HCl(aq) 100% H+(aq)  +  Cl(aq)

However, if an acid or base is weak, it may dissolve in H2O but does not ionize completely. This means that there is an equilibrium between the unionized acid or base and the ionized form. HC2H3O2 is an example of a weak acid:

HC2H3O2(aq)H+(aq) + C2H3O2(aq)

HC2H3O2 is soluble in H2O (in fact, it is the acid in vinegar), so the reactant concentration will appear in the equilibrium constant expression. But not all the molecules separate into ions. This is the case for all weak acids and bases.

An acid dissociation constantThe equilibrium constant for the dissociation of a weak acid into ions., Ka, is the equilibrium constant for the dissociation of a weak acid into ions. Note the a subscript on the K; it implies that the substance is acting as an acid. The larger Ka is, the stronger the acid is. Table 13.1 "Acid Dissociation Constants for Some Weak Acids" lists several acid dissociation constants. Keep in mind that they are just equilibrium constants.

Table 13.1 Acid Dissociation Constants for Some Weak Acids

Acid Ka
HC2H3O2 1.8 × 10−5
HClO2 1.1 × 10−2
H2PO4 6.2 × 10−8
HCN 6.2 × 10−10
HF 6.3 × 10−4
HNO2 5.6 × 10−4
H3PO4 7.5 × 10−3

Note also that the acid dissociation constant refers to one H+ ion coming off the initial reactant. Thus the acid dissociation constant for H3PO4 refers to this equilibrium:

H3PO4(aq)H+(aq) + H2PO4(aq)    Ka=7.5×103

The H2PO4 ion, called the dihydrogen phosphate ion, is also a weak acid with its own acid dissociation constant:

H2PO4(aq)H+(aq) + HPO42–(aq)    Ka=6.2×108

Thus for so-called polyprotic acids, each H+ ion comes off in sequence, and each H+ ion that ionizes does so with its own characteristic Ka.

Example 10

Write the equilibrium equation and the Ka expression for HSO4 acting as a weak acid.

Solution

HSO4 acts as a weak acid by separating into an H+ ion and an SO42− ion:

HSO4(aq)H+(aq) + SO42–(aq)

The Ka is written just like any other equilibrium constant, in terms of the concentrations of products divided by concentrations of reactants:

Ka=[H+][SO42][HSO4]

Test Yourself

Write the equilibrium equation and the Ka expression for HPO42− acting as a weak acid.

Answer

HPO42(aq)H+(aq) + PO43(aq)Ka=[H+][PO43][HPO42]

The Ka is used in equilibrium constant problems just like other equilibrium constants are. However, in some cases, we can simplify the mathematics if the numerical value of the Ka is small, much smaller than the concentration of the acid itself. Example 11 illustrates this.

Example 11

What is the pH of a 1.00 M solution of HC2H3O2? The Ka of HC2H3O2 is 1.8 × 10−5.

Solution

This is a two-part problem. We need to determine [H+] and then use the definition of pH to determine the pH of the solution. For the first part, we can use an ICE chart:

HC2H3O2(aq) H+(g) + C2H3O2(g)
I 1.00   0   0
C x +x +x
E 1.00 − x +x +x

We now construct the Ka expression, substituting the concentrations from the equilibrium row in the ICE chart:

Ka=[H+][C2H3O2][HC2H3O2]=(x)(x)(1.00x)=1.8×105

Here is where a useful approximation comes in: at 1.8 × 10−5, HC2H3O2 will not ionize very much, so we expect that the value of x will be small. It should be so small that in the denominator of the fraction, the term (1.00 − x) will likely be very close to 1.00. As such, we would introduce very little error if we simply neglect the x in that term, making it equal to 1.00:

(1.00 − x) ≈ 1.00 for small values of x

This simplifies the mathematical expression we need to solve:

(x)(x)1.00=1.8×105

This is much easier to solve than a more complete quadratic equation. The new equation to solve becomes

x2 = 1.8 × 10−5

Taking the square root of both sides,

x = 4.2 × 10−3

Because x is the equilibrium concentrations of H+ and C2H3O2, we thus have

[H+] = 4.2 × 10−3 M

Notice that we are justified by neglecting the x in the denominator; it truly is small compared to 1.00. Now we can determine the pH of the solution:

pH = −log[H+] = −log(4.2 × 10−3) = 2.38

Test Yourself

What is the pH of a 0.500 M solution of HCN? The Ka of HCN is 6.2 × 10−10.

Answer

4.75

Weak bases also have dissociation constants, labeled Kb (the b subscript stands for base). However, values of Kb are rarely tabulated because there is a simple relationship between the Kb of a base and the Ka of its conjugate acid:

Ka × Kb = 1.0 × 10−14

Thus it is simple to calculate the Kb of a base from the Ka of its conjugate acid.

Example 12

What is the value of Kb for C2H3O2, which can accept a proton and act as a base?

Solution

To determine the Kb for C2H3O2, we need to know the Ka of its conjugate acid. The conjugate acid of C2H3O2 is HC2H3O2. The Ka for HC2H3O2 is in Table 13.1 "Acid Dissociation Constants for Some Weak Acids" and is 1.8 × 10−5. Using the mathematical relationship between Ka and Kb:

(1.8 × 10−5)Kb = 1.0 × 10−14

Solving,

Kb=1.0×10141.8×105=5.6×1010

Test Yourself

What is the value of Kb for PO43−, which can accept a proton and act as a base? The Ka for HPO42− is 2.2 × 10−13.

Answer

4.5 × 10−2

Autoionization of Water

In Chapter 12 "Acids and Bases", we introduced the autoionization of water—the idea that water can act as a proton donor and proton acceptor simultaneously. Because water is not a strong acid (Table 12.2 "Strong Acids and Bases"), it must be a weak acid, which means that its behavior as an acid must be described as an equilibrium. That equilibrium is as follows:

H2O() + H2O()H3O+(aq) + OH(aq)

The equilibrium constant includes [H3O+] and [OH] but not [H2O(ℓ)] because it is a pure liquid. Hence the expression does not have any terms in its denominator:

K = [H3O+][OH] ≡ Kw = 1.0 × 10−14

This is the same Kw that was introduced in Chapter 12 "Acids and Bases" and the same 1.0 × 10−14 that appears in the relationship between the Ka and the Kb of a conjugate acid-base pair. In fact, we can rewrite this relationship as follows:

Ka × Kb = Kw

Insoluble Compounds

In Chapter 4 "Chemical Reactions and Equations", Section 4.2 "Types of Chemical Reactions: Single- and Double-Displacement Reactions", on chemical reactions, the concept of soluble and insoluble compounds was introduced. Solubility rules were presented that allow a person to predict whether certain simple ionic compounds will or will not dissolve.

Describing a substance as soluble or insoluble is a bit misleading because virtually all substances are soluble; they are just soluble to different extents. In particular for ionic compounds, what we typically describe as an insoluble compound can actually be ever so slightly soluble; an equilibrium is quickly established between the solid compound and the ions that do form in solution. Thus the hypothetical compound MX does in fact dissolve but only very slightly. That means we can write an equilibrium for it:

MX(s)M+(aq) + X(aq)

The equilibrium constant for a compound normally considered insoluble is called a solubility product constantThe equilibrium constant for a compound normally considered insoluble. and is labeled Ksp (with the subscript sp, meaning “solubility product”). Because the reactant is a solid, its concentration does not appear in the Ksp expression, so like Kw, expressions for Ksp do not have denominators. For example, the chemical equation and the expression for the Ksp for AgCl, normally considered insoluble, are as follows:

AgCl(s)Ag+(aq) + Cl(aq)    Ksp=[Ag+][Cl]

Table 13.2 "Solubility Product Constants for Slightly Soluble Ionic Compounds" lists some values of the Ksp for slightly soluble ionic compounds.

Table 13.2 Solubility Product Constants for Slightly Soluble Ionic Compounds

Compound Ksp
BaSO4 1.1 × 10−10
Ca(OH)2 5.0 × 10−6
Ca3(PO4)2 2.1 × 10−33
Mg(OH)2 5.6 × 10−12
HgI2 2.9 × 10−29
AgCl 1.8 × 10−10
AgI 8.5 × 10−17
Ag2SO4 1.5 × 10−5

Example 13

Write the Ksp expression for Ca3(PO4)2.

Solution

Recall that when an ionic compound dissolves, it separates into its individual ions. For Ca3(PO4)2, the ionization reaction is as follows:

Ca3(PO4)2(s)3Ca2+(aq) + 2PO43–(aq)

Hence the Ksp expression is

Ksp = [Ca2+]3[PO43−]2

Test Yourself

Write the Ksp expression Ag2SO4.

Answer

Ksp = [Ag+]2[SO42−]

Equilibrium problems involving the Ksp can also be done, and they are usually more straightforward than other equilibrium problems because there is no denominator in the Ksp expression. Care must be taken, however, in completing the ICE chart and evaluating exponential expressions.

Example 14

What are [Ag+] and [Cl] in a saturated solution of AgCl? The Ksp of AgCl is 1.8 × 10−10.

Solution

The chemical equation for the dissolving of AgCl is

AgCl(s)Ag+(aq) + Cl(aq) 

The Ksp expression is as follows:

Ksp = [Ag+][Cl]

So the ICE chart for the equilibrium is as follows:

AgCl(s) Ag+(aq) + Cl(aq)
I     0   0
C x +x +x
E   +x +x

Notice that we have little in the column under AgCl except the stoichiometry of the change; we do not need to know its initial or equilibrium concentrations because its concentration does not appear in the Ksp expression. Substituting the equilibrium values into the expression:

(x)(x) = 1.8 × 10−10

Solving,

x2 = 1.8 × 10−10 x = 1.3 × 10−5

Thus [Ag+] and [Cl] are both 1.3 × 10−5 M.

Test Yourself

What are [Ba2+] and [SO42−] in a saturated solution of BaSO4? The Ksp of BaSO4 is 1.1 × 10−10.

Answer

1.0 × 10−5 M

Example 15

What are [Ca2+] and [PO43−] in a saturated solution of Ca3(PO4)2? The Ksp of Ca3(PO4)2 is 2.1 × 10−33.

Solution

This is similar to Example 14, but the ICE chart is much different because of the number of ions formed.

Ca3(PO4)2(s) 3Ca2+(aq) + 2PO43−(aq)
I     0   0
C x +3x +2x
E   +3x +2x

For every unit of Ca3(PO4)2 that dissolves, three Ca2+ ions and two PO43− ions are formed. The expression for the Ksp is also different:

Ksp = [Ca2+]3[PO43−]2 = 2.1 × 10−33

Now when we substitute the unknown concentrations into the expression, we get

(3x)3(2x)2 = 2.1 × 10−33

When we raise each expression inside parentheses to the proper power, remember that the power affects everything inside the parentheses, including the number. So

(27x3)(4x2) = 2.1 × 10−33

Simplifying,

108x5 = 2.1 × 10−33

Dividing both sides of the equation by 108, we get

x5 = 1.9 × 10−35

Now we take the fifth root of both sides of the equation (be sure you know how to do this on your calculator):

x = 1.1 × 10−7

We are not done yet. We still need to determine the concentrations of the ions. According to the ICE chart, [Ca2+] is 3x, not x. So

[Ca2+] = 3x = 3 × 1.1 × 10−7 = 3.3 × 10−7 M

[PO43−] is 2x, so

[PO43−] = 2x = 2 × 1.1 × 10−7 = 2.2 × 10−7 M

Test Yourself

What are [Mg2+] and [OH] in a saturated solution of Mg(OH)2? The Ksp of Mg(OH)2 is 5.6 × 10−12.

Answer

[Mg2+] = 1.1 × 10−4 M; [OH] = 2.2 × 10−4 M

Food and Drink App: Solids in Your Wine Bottle

People who drink wine from bottles (as opposed to boxes) will occasionally notice some insoluble materials in the wine, either crusting the bottle, stuck to the cork, or suspended in the liquid wine itself. The accompanying figure shows a cork encrusted with colored crystals. What are these crystals?

The red crystals on the top of the wine cork are from insoluble compounds that are not soluble in the wine.

One of the acids in wine is tartaric acid (H2C4H4O6). Like the other acids in wine (citric and malic acids, among others), tartaric acid imparts a slight tartness to the wine. Tartaric acid is rather soluble in H2O, dissolving over 130 g of the acid in only 100 g of H2O. However, the potassium salt of singly ionized tartaric acid, potassium hydrogen tartrate (KHC4H4O6; also known as potassium bitartrate and better known in the kitchen as cream of tartar), has a solubility of only 6 g per 100 g of H2O. Thus, over time, wine stored at cool temperatures will slowly precipitate potassium hydrogen tartrate. The crystals precipitate in the wine or grow on the insides of the wine bottle and, if the bottle is stored on its side, on the bottom of the cork. The color of the crystals comes from pigments in the wine; pure potassium hydrogen tartrate is clear in its crystalline form, but in powder form it is white.

The crystals are harmless to ingest; indeed, cream of tartar is used as an ingredient in cooking. However, most wine drinkers don’t like to chew their wine, so if tartrate crystals are present in a wine, the wine is usually filtered or decanted to remove the crystals. Tartrate crystals are almost exclusively in red wines; white and rose wines do not have as much tartaric acid in them.

Key Takeaway

  • Equilibrium constants exist for certain groups of equilibria, such as weak acids, weak bases, the autoionization of water, and slightly soluble salts.

Exercises

  1. Explain the difference between the Keq and the Ksp.

  2. Explain the difference between the Ka and the Kb.

  3. Write the balanced chemical equation that represents the equilibrium between HF(aq) as reactants and H+(aq) and F(aq) as products.

  4. Write the balanced chemical equation that represents the equilibrium between CaF2(s) as reactants and Ca2+(aq) and F(aq) as products.

  5. Assuming that all species are dissolved in solution, write the Keq expression for the chemical equation in Exercise 3.

  6. Noting the phase labels, write the Ksp expression for the chemical equation in Exercise 4.

  7. Determine the concentrations of all species in the ionization of 0.100 M HClO2 in H2O. The Ka for HClO2 is 1.1 × 10−2.

  8. Determine the concentrations of all species in the ionization of 0.0800 M HCN in H2O. The Ka for HCN is 6.2 × 10−10.

  9. Determine the pH of a 1.00 M solution of HNO2. The Ka for HNO2 is 5.6 × 10−4.

  10. Determine the pH of a 3.35 M solution of HC2H3O2. The Ka for HC2H3O2 is 1.8 × 10−5.

  11. Write the chemical equations and Ka expressions for the stepwise dissociation of H3PO4.

  12. Write the chemical equations and Ka expressions for the stepwise dissociation of H3C6H5O7.

  13. If the Ka for HNO2 is 5.6 × 10−4, what is the Kb for NO2(aq)?

  14. If the Ka for HCN is 6.2 × 10−10, what is the Kb for CN(aq)?

  15. What is [OH] in a solution whose [H+] is 3.23 × 10−6 M?

  16. What is [OH] in a solution whose [H+] is 9.44 × 10−11 M?

  17. What is [H+] in a solution whose [OH] is 2.09 × 10−2 M?

  18. What is [H+] in a solution whose [OH] is 4.07 × 10−7 M?

  19. Write the balanced chemical equation and the Ksp expression for the slight solubility of Mg(OH)2(s).

  20. Write the balanced chemical equation and the Ksp expression for the slight solubility of Fe2(SO4)3(s).

  21. What are [Sr2+] and [SO42−] in a saturated solution of SrSO4(s)? The Ksp of SrSO4(s) is 3.8 × 10−4.

  22. What are [Ba2+] and [F] in a saturated solution of BaF2(s)? The Ksp of BaF2(s) is 1.8 × 10−7.

  23. What are [Ca2+] and [OH] in a saturated solution of Ca(OH)2(s)? The Ksp of Ca(OH)2(s) is 5.0 × 10−6.

  24. What are [Pb2+] and [I] in a saturated solution of PbI2? The Ksp for PbI2 is 9.8 × 10−9.

Answers

  1. The Ksp is a special type of the Keq and applies to compounds that are only slightly soluble.

  2. HF(aq)H+(aq)+F(aq)

  3. Keq=[H+][F][HF]

  4. [HClO2] = 0.0719 M; [H+] = [ClO2] = 0.0281 M

  5. 1.63

  6. H3PO4(aq)H+(aq) + H2PO4(aq); Ka=[H+][H2PO4][H3PO4]

    H2PO4(aq)H+(aq) + HPO42–(aq); Ka=[H+][HPO42–][H2PO4]

    HPO42–(aq)H+(aq) + PO43–(aq); Ka=[H+][PO43–][HPO42–]

  7. 1.8 × 10−11

  8. 3.10 × 10−9 M

  9. 4.78 × 10−13 M

  10. MgOH2(s)Mg2+(aq) + 2OH(aq); Ksp = [Mg2+][OH]2

  11. [Sr2+] = [SO42−] = 1.9 × 10−2 M

  12. [Ca2+] = 0.011 M; [OH] = 0.022 M

13.6 End-of-Chapter Material

Additional Exercises

  1. What is the relationship between the Ksp expressions for a chemical reaction and its reverse chemical reaction?

  2. What is the relationship between the Kw value for H2O and its reverse chemical reaction?

  3. For the equilibrium

    PCl3(g) + Cl2(g)PCl5(g) + 60 kJ

    list four stresses that serve to increase the amount of PCl5.

  4. For the equilibrium

    N2O4 + 57 kJ2NO2

    list four stresses that serve to increase the amount of NO2.

  5. Does a very large Keq favor the reactants or the products? Explain your answer.

  6. Is the Keq for reactions that favor reactants large or small? Explain your answer.

  7. Show that Ka × Kb = Kw by determining the expressions for these two reactions and multiplying them together.

    HX(aq)H+(aq) + X(aq) X(aq) + H2O()HX(aq) + OH(aq)
  8. Is the conjugate base of a strong acid weak or strong? Explain your answer.

  9. What is the solubility in moles per liter of AgCl? Use data from Table 13.2 "Solubility Product Constants for Slightly Soluble Ionic Compounds".

  10. What is the solubility in moles per liter of Ca(OH)2? Use data from Table 13.2 "Solubility Product Constants for Slightly Soluble Ionic Compounds".

  11. Under what conditions is Keq = KP?

  12. Under what conditions is Keq > KP when the temperature is 298 K?

  13. What is the pH of a saturated solution of Mg(OH)2? Use data from Table 13.2 "Solubility Product Constants for Slightly Soluble Ionic Compounds".

  14. What are the pH and the pOH of a saturated solution of Fe(OH)3? The Ksp of Fe(OH)3 is 2.8 × 10−39.

  15. For a salt that has the general formula MX, an ICE chart shows that the Ksp is equal to x2, where x is the concentration of the cation. What is the appropriate formula for the Ksp of a salt that has a general formula of MX2?

  16. Referring to Exercise 15, what is the appropriate formula for the Ksp of a salt that has a general formula of M2X3 if the concentration of the cation is defined as 2x, rather than x?

  17. Consider a saturated solution of PbBr2(s). If [Pb2+] is 1.33 × 10−5 M, find each of the following.

    1. [Br]
    2. the Ksp of PbBr2(s)
  18. Consider a saturated solution of Pb3(PO4)2(s). If [Pb2+] is 7.34 × 10−14 M, find each of the following.

    1. [PO43−]
    2. the Ksp of Pb3(PO4)2(s)

Answers

  1. They are reciprocals of each other.

  2. increase the pressure; decrease the temperature; add PCl3; add Cl2; remove PCl5

  3. favor products because the numerator of the ratio for the Keq is larger than the denominator

  4. Ka×Kb=[H+] [X ][HX]×[HX][OH] [X ]=[H+][OH]=Kw

  5. 1.3 × 10−5 mol/L

  6. Keq = KP when the number of moles of gas on both sides of the reaction is the same.

  7. 10.35

  8. 4x3

    1. 2.66 × 10−5 M
    2. 9.41 × 10−15