This is “Review Exercises and Sample Exam”, section 8.7 from the book Beginning Algebra (v. 1.0). For details on it (including licensing), click here.

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

## 8.7 Review Exercises and Sample Exam

### Review Exercises

(Assume all variables represent nonnegative numbers.)

Simplify.

1. $36$

2. $425$

3. $−16$

4. $−9$

5. $1253$

6. $3 −83$

7. $1643$

8. $−5 −273$

9. $40$

10. $−350$

11. $9881$

12. $1121$

13. $5 1923$

14. $2 −543$

Simplify.

15. $49x2$

16. $25a2b2$

17. $75x3y2$

18. $200m4n3$

19. $18x325y2$

20. $108x349y4$

21. $216x33$

22. $−125x6y33$

23. $27a7b5c33$

24. $120x9y43$

Use the distance formula to calculate the distance between the given two points.

25. (5, −8) and (2, −10)

26. (−7, −1) and (−6, 1)

27. (−10, −1) and (0, −5)

28. (5, −1) and (−2, −2)

Simplify.

29. $83+33$

30. $1210−210$

31. $143+52−53−62$

32. $22ab−5ab+7ab−2ab$

33. $7x−(3x+2y)$

34. $(8yx−7xy)−(5xy−12yx)$

35. $45+12−20−75$

36. $24−32+54−232$

37. $23x2+45x−x27+20x$

38. $56a2b+8a2b2−224a2b−a18b2$

39. $5y4x2y−(x16y3−29x2y3)$

40. $(2b9a2c−3a16b2c)−(64a2b2c−9ba2c)$

41. $216x3−125xy3−8x3$

42. $128x33−2x⋅543+3 2x33$

43. $8x3y3−2x⋅8y3+27x3y3+x⋅y3$

44. $27a3b3−3 8ab33+a⋅64b3−b⋅a3$

Multiply.

45. $3⋅6$

46. $(35)2$

47. $2(3−6)$

48. $(2−6)2$

49. $(1−5)(1+5)$

50. $(23+5)(32−25)$

51. $2a23⋅4a3$

52. $25a2b3⋅5a2b23$

Divide.

53. $724$

54. $104864$

55. $98x4y236x2$

56. $81x6y738y33$

Rationalize the denominator.

57. $27$

58. $63$

59. $142x$

60. $1215$

61. $12x23$

62. $5a2b5ab23$

63. $13−2$

64. $2−62+6$

Rational Exponents

65. $71/2$

66. $32/3$

67. $x4/5$

68. $y−3/4$

Write as a radical and then simplify.

69. $41/2$

70. $501/2$

71. $42/3$

72. $811/3$

73. $(14)3/2$

74. $(1216)−1/3$

Perform the operations and simplify. Leave answers in exponential form.

75. $31/2⋅33/2$

76. $21/2⋅21/3$

77. $43/241/2$

78. $93/491/4$

79. $(36x4y2)1/2$

80. $(8x6y9)1/3$

81. $( a 4/3 a 1/2)2/5$

82. $(16 x 4/3 y 2)1/2$

Solve.

83. $x=5$

84. $2x−1=3$

85. $x−8+2=5$

86. $3x−5−1=11$

87. $5x−3=2x+15$

88. $8x−15=x$

89. $x+41=x−1$

90. $7−3x=x−3$

91. $2(x+1)=2(x+1)$

92. $x(x+6)=4$

93. $x(3x+10)3=2$

94. $2x2−x3+4=5$

95. $3(x+4)(x+1)3=5x+373$

96. $3x2−9x+243=(x+2)23$

97. $y1/2−3=0$

98. $y1/3+3=0$

99. $(x−5)1/2−2=0$

100. $(2x−1)1/3−5=0$

### Sample Exam

In problems 1–18, assume all variables represent nonnegative numbers.

1. Simplify.

1. $100$
2. $−100$
3. $−100$

2. Simplify.

1. $273$
2. $−273$
3. $−273$

3. $12825$

4. $1921253$

5. $512x2y3z$

6. $250x2y3z53$

Perform the operations.

7. $524−108+96−327$

8. $38x2y−(x200y−18x2y)$

9. $2ab(32a−b)$

10. $(x−2y)2$

Rationalize the denominator.

11. $102x$

12. $14xy23$

13. $1x+5$

14. $2−32+3$

Perform the operations and simplify. Leave answers in exponential form.

15. $22/3⋅21/6$

16. $104/5101/3$

17. $(121a4b2)1/2$

18. $(9 y 1/3 x 6)1/2y1/6$

Solve.

19. $x−7=0$

20. $3x+5=1$

21. $2x−1+2=x$

22. $31−10x=x−4$

23. $(2x+1)(3x+2)=3(2x+1)$

24. $x(2x−15)3=3$

25. The period, T, of a pendulum in seconds is given the formula $T=2πL32$, where L represents the length in feet. Calculate the length of a pendulum if the period is 1½ seconds. Round off to the nearest tenth.

1: 6

3: Not a real number

5: $5$

7: 1/4

9: $210$

11: $729$

13: $20 33$

15: $7x$

17: $5xy3x$

19: $3x2x5y$

21: $6x$

23: $3a2bc⋅ab23$

25: $13$

27: $229$

29: $113$

31: $93−2$

33: $4x−2y$

35: $5−33$

37: $−x3+55x$

39: $12xyy$

41: $4 x3−5 xy3$

43: $2x⋅y3$

45: $32$

47: $6−23$

49: −4

51: $2a$

53: $32$

55: $7xy26$

57: $277$

59: $72xx$

61: $4x32x$

63: $3+2$

65: $7$

67: $x45$

69: 2

71: $2 23$

73: 1/8

75: 9

77: 4

79: $6x2y$

81: $a1/3$

83: 25

85: 17

87: 6

89: 8

91: −1/2, −1

93: 2/3, −4

95: −5, 5/3

97: 9

99: 9

1:

1. 10
2. Not a real number
3. −10

3: $825$

5: $10xy3yz$

7: $146−153$

9: $6a2b−2ba$

11: $52xx$

13: $x−5x−25$

15: $25/6$

17: $11a2b$

19: 49

21: 5

23: −1/2, 1/3

25: 1.8 feet